Corso di Calcolo Numerico (Corso A-L)

Corso di Laurea in Ingegneria Informatica e dell'Automazione

Ultimo Aggiornamento 01/10/2021


Avvisi

Le prove d'esame si svolgeranno in presenza il giorno 8 settembre 2021 secondo il seguente calendario:
8.09.2021 Ore 8.45 Aula 4 Lettere A-GIA
8.09.2021 Ore 11.00 Aula 4 Lettere GIE-Z

Gli studenti dovranno essere obbligatoriamente in possesso del green pass (che dovranno esibire ad ogni richiesta), dovranno compilare il Modulo di autoceritficazione e presentarsi al punto di accesso PolibaControl per la misura della temperatura;
Gli studenti dovranno portare carta e penna da casa.
Potranno sostenere la prova in remoto solo gli studenti:
a) fragili, poiché affetti da patologie per le quali le attività in presenza possono essere sconsigliate;
b) indisponibili per motivi certificabili di salute;
c) internazionali ove, per limitazioni della mobilità, siano impossibilitati a garantire la presenza.

I predetti studenti dovranno inviare una comunicazione al Presidente della commissione d’esame, richiedendo di svolgere l’esame in modalità a distanza.
Gli studenti di cui ai punti a) e b) dovranno, altresì, contestualmente inviare idonea certificazione medica al Coordinatore del corso di studi e comunicarlo al Presidente della commissione d'esame.
La prova a distanza per questi ultimi studenti si svolgerà alle 15.30 del giorno 8 settembre 2021 sulla piattaforma Teams.

Avviso per gli studenti che sosterranno la prova in presenza Prossimi appelli per gli studenti dell'anno accademico 2020/21:
20 Gennaio 2021 ore 9.00
1 Febbraio 2021 ore 9.00
15 Febbraio 2021 ore 9.00
20 Aprile 2021 ore 9.30
16 Giugno 2021 ore 9.00
14 Luglio 2021 ore 9.00
8 Settembre 2021 ore 9.00 Aula 4
15 Novembre 2021 ore 10.00

Organizzazione del Corso

Il Corso di Calcolo Numerico vale 6 crediti suddivisi secondo la seguente tipologia didattica:
5 crediti di lezioni teoriche (pari a 50 ore)
1 credito di laboratorio (pari a 10 ore).

Finalità del Corso

Obiettivo del corso è quello di fornire agli studenti le basi dell'Analisi Numerica e in particolare di studiare metodi e algoritmi di base per la risoluzione di alcuni problemi matematici tra i quali: la risoluzione di sistemi lineari, l'interpolazione di dati e funzioni, il calcolo degli zeri di funzioni non lineari, il calcolo approssimato degli integrali definiti. Saranno inoltre fornite le nozioni di base del calcolo delle probabilità.

Prerequisiti

L'esame di Calcolo Numerico non richiede alcuna propedeuticità, ma solo una serie di requisiti, in particolare l'esame di Geometria e Algebra, Analisi Matematica e Fondamenti di Informatica.

Programma del Corso

Rappresentazione di dati reali.

Rappresentazione in base di un numero reale. Mantissa e caratteristica di un numero reale. I numeri di macchina. Arrotondamento e troncamento. Errore assoluto ed errore relativo. Precisione macchina. Operazioni di macchina.

Metodi numerici per equazioni non lineari.

Metodo di bisezione. Convergenza del metodo di bisezione. Metodo della falsa posizione. Metodi di iterazione funzionale. Condizione sufficiente per la convergenza. Criteri di arresto. Ordine di convergenza di un metodo iterativo. Teorema di caratterizzazione dell'ordine di convergenza. Metodo di Newton-Raphson. Convergenza del metodo di Netwon-Raphson per radici semplici. Ordine di convergenza del metodo di Newton-Raphson per radidi semplici. Il metodo della direzione costante. Il metodo della secante. Sistemi non lineari. Il metodo di Newton per sistemi non lineari.

Algebra Lineare.

Richiami di algebra lineare. Sistemi triangolari. Metodi di sostituzione in avanti e all'indietro. Costo computazionale del metodi di sostituzione. Metodo di eliminazione di Gauss. Costo computazionale del metodo di Gauss. Calcolo del determinante con il metodo di Gauss. Minori principali di una matrice. Relazione tra minori principali ed elementi pivotali. Strategie di pivoting nel metodo di eliminazione di Gauss: Pivoting parziale e totale. La fattorizzazione LU. Calcolo diretto della fattorizzazione LU. Tecniche di Crout e di Doolittle. Equivalenza tra metodo di eliminazione di Gauss e fattorizzazione LU. Condizionamento dei sistemi lineari.

Interpolazione e Quadratura numerica.

Polinomio interpolante di Lagrange. Formula dell'errore nell'interpolazione di Lagrange. Il fenomeno di Runge. Polinomi di Chebyshev. Teorema di minimax. Interpolazione su nodi di Chebyshev. Interpolazione con funzioni polinomiali a tratti. Definizione di funzione spline cubica. Approssimazione ai minimi quadrati. La retta di regressione. Formule di quadratura di tipo interpolatorio. Grado di precisione di una formula di quadratura. Formule di Newton-Cotes. Formula dei trapezi. Espressione del resto nella formula dei trapezi. La formula di Simpson. Formula dei trapezi composta. Stima a priori dell'errore per la formula dei trapezi composta. Formula del punto di mezzo. Formula di Simpson composta. Formula del punto di mezzo composta.

Elementi di Calcolo delle Probabilità.

Esperimenti casuali. Frequenza assoluta e frequenza relativa. Spazi campione finiti. Definizione assiomatica di probabilità. Elementi di calcolo combinatorio. Principi di moltiplicazione e di addizione. Permutazioni, combinazioni e disposizioni. Probabilità condizionata. Il teorema della probabilità totale. Teorema di Bayes. Eventi indipendenti. Variabili aleatorie discrete e continue. Distribuzione binomiale. Distribuzione uniforme. La funzione distribuzione di probabilità. La funzione cumulativa di distribuzione di probabilità. Valore atteso di una variabile aleatoria e relative proprietà.

Libro di testo:
G. Naldi, L. Pareschi, G. Russo, Introduzione al Calcolo Scientifica, McGraw-Hill 2001.

Materiale didattico

Dispense di Calcolo Numerico: Dispense Anno Accademico 2020/2021

Dispense di MatLab: Dispense MatLab 2014/2015

Modalità dell'esame

L'esame consiste in una prova orale preceduta da una prova scritta consisente nella risoluzione di un esercizio di probabilità ed un quesito di programmazione MatLab.
La prenotazione su Esse3 è obbligatoria per poter sostenere l'esame.
Gli studenti degli anni precedenti il 2018/19 devono sostenere solo la prova orale.

Date degli appelli

20 Gennaio 2021 ore 9.00
1 Febbraio 2021 ore 9.00
15 Febbraio 2021 ore 9.00
20 Aprile 2021 ore 9.00
16 Giugno 2021 ore 9.00
14 Luglio 2021 ore 9.00
8 Settembre 2021 ore 9.00
15 Novembre 2021 ore 10.00