Capitolo 1

L'insieme dei numeri macchina

1.1 Introduzione al Calcolo Numerico

Il Calcolo Numerico è una disciplina che fa parte di un ampio settore della Matematica Applicata che prende il nome di Analisi Numerica. Si tratta di una materia che è al confine tra la Matematica e l'Informatica poichè cerca di risolvere i consueti problemi matematici utilizzando però una via algoritmica. In pratica i problemi vengono risolti indicando un processo che, in un numero finito di passi, fornisca una soluzione numerica e soprattutto che sia implementabile su un elaboratore. I problemi matematici che saranno affrontati nelle pagine seguenti sono problemi di base: risoluzione di sistemi lineari, approssimazione delle radici di funzioni non lineari, approssimazione di funzioni e dati sperimentali, calcolo di integrali definiti. Tali algoritmi di base molto spesso non sono altro se non un piccolo ingranaggio nella risoluzione di problemi ben più complessi.

1.2 Rappresentazione in base di un numero reale

Dovendo considerare problemi in cui l'elaboratore effettua computazioni esclusivamente su dati di tipo numerico risulta decisivo iniziare la trattazione degli argomenti partendo dalla rappresentazione di numeri. Innanzitutto è opportuno precisare che esistono due modi per rappresentare i numeri: la cosiddetta notazione posizionale, in cui il valore di una cifra dipende dalla posizione

in cui si trova all'interno del numero, da quella notazione non posizionale, in cui ogni numero è rappresentato da uno, o da un insieme di simboli (si pensi come esempio alla numerazione usata dai Romani). La motivazione che spinge a considerare come primo problema quello della rappresentazione di numeri reali è che ovviamente si deve sapere il livello di affidabilità dei risultati forniti dall'elaboratore. Infatti bisogna osservare che i numeri reali sono infiniti mentre la memoria di un calcolatore ha una capacità finita che ne rende impossibile la rappresentazione esatta. Una seconda osservazione consiste nel fatto che un numero reale ammette molteplici modi di rappresentazione. Per esempio scrivere

$$x = 123.47$$

è la rappresentazione, in forma convenzionale, dell'espressione

$$x = 123.47 = 1 \times 10^{2} + 2 \times 10^{1} + 3 \times 10^{0} + 4 \times 10^{-1} + 7 \times 10^{-2}$$

da cui, mettendo in evidenza 10²:

$$x = 10^{2} \times (1 \times 10^{0} + 2 \times 10^{-1} + 3 \times 10^{-2} + 4 \times \times 10^{-3} + 7 \times 10^{-4})$$

mentre, mettendo in evidenza 10^3 lo stesso numero viene scritto come

$$x = 10^3 \times (1 \times 10^{-1} + 2 \times 10^{-2} + 3 \times 10^{-3} + 4 \times 10^{-4} + 7 \times 10^{-5})$$

deducendo che ogni numero, senza una necessaria rappresentazione convenzionale, può essere scritto in infiniti modi. Il seguente teorema è fondamentale proprio per definire la rappresentazione dei numeri reali in una determinata base β .

Teorema 1.2.1 Sia $\beta \in \mathbb{N}$, $\beta > 1$, allora ogni numero reale x, $x \neq 0$, può essere rappresentato univocamente in base β nel seguente modo

$$x = \pm \beta^p \sum_{i=1}^{\infty} d_i \beta^{-i}$$

dove $p \in \mathbb{Z}$, e i valori $d_i \in \mathbb{N}$ (detti cifre), verificano le seguenti proprietà:

- 1. $d_i \in \{1, 2, 3, \dots, \beta 1\};$
- 2. $d_1 \neq 0$;
- 3. le cifre d_i non sono definivamente uguali a $\beta 1$.

Evitiamo la dimostrazione del Teorema 1.2.1 ma osserviamo che la la terza ipotesi è essenziale per l'unicità della rappresentazione. Consideriamo infatti il seguente esempio (in base $\beta = 10$).

$$x = 0.999999999...$$

$$= 9 \times 10^{-1} + 9 \times 10^{-2} + 9 \times 10^{-3} + ...$$

$$= \sum_{i=1}^{\infty} 9 \cdot 10^{-i} = 9 \sum_{i=1}^{\infty} \left(\frac{1}{10}\right)^{i}$$

$$= 9 \left(\frac{1}{10}\right) \left(1 - \frac{1}{10}\right)^{-1}$$

$$= 9 \left(\frac{1}{10}\right) \left(\frac{10}{9}\right) = 1.$$

L'ultima uguaglianza deriva dalla convergenza della serie geometrica

$$\sum_{i=0}^{\infty} q = \frac{1}{1-q}$$

quando 0 < q < 1, da cui segue

$$1 + \sum_{i=1}^{\infty} q = \frac{1}{1 - q}$$

e

$$\sum_{i=1}^{\infty} q = \frac{1}{1-q} - 1 = \frac{q}{1-q}.$$

In conclusione, senza la terza ipotesi del Teorema 1.2.1, al numero 1 corrisponderebbero due differenti rappresentazioni in base.

Considerato un numero reale $x \in \mathbb{R}, x \neq 0$, l'espressione

$$x = \pm \beta^p \times 0.d_1d_2...d_k...$$

prende il nome di rappresentazione in base β di x. Il numero p viene detto esponente (o caratteristica), i valori d_i sono le cifre della rappresentazione,

mentre $0.d_1d_2...d_k...$ si dice mantissa. Il numero x viene normalmente rappresentato con la cosiddetta notazione posizionale $x = segno(x)(.d_1d_2d_3...) \times \beta^p$, che viene detta normalizzata. In alcuni casi à ammessa una rappresentazione in notazione posizionale tale che $d_1 = 0$, che viene detta denormalizzata. La basi più utilizzate sono $\beta = 10$ (sistema decimale), $\beta = 2$ (sistema binario, che, per la sua semplicità, è quello utilizzato dagli elaboratori elettronici), e $\beta = 16$ (sistema esadecimale) e comunque la base è sempre un numero pari. Nel sistema esadecimale le cifre appartengono all'insieme

$$\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F\}$$
.

Bisogna ternere presente che un qualunque numero reale $x \neq 0$ può essere rappresentato con infinite cifre nella mantissa e inoltre l'insieme dei numeri reali ha cardinalità infinita. Poichè un elaboratore è dotato di memoria finita non è possibile memorizzare:

- a) gli infiniti numeri reali
- b) le infinite (in generale) cifre di un numero reale.

1.3 L'insieme dei numeri macchina

Assegnati i numeri $\beta, t, m, M \in \mathbb{N}$ si definisce insieme dei numeri di macchina con rappresentazione normalizzata in base β con t cifre significative

$$\mathbb{F}(\beta, t, m, M) = \left\{ x \in \mathbb{R} : \ x = \pm \beta^p \ \sum_{i=1}^t d_i \beta^{-i} \right\} \cup \{0\}$$

dove

- 1. $t \ge 1$, $\beta \ge 2$, m, M > 0;
- 2. $d_i \in \{0, 1, \ldots, \beta 1\};$
- 3. $d_1 \neq 0$;
- 4. $p \in \mathbb{Z}, -m \le p \le M$.

È stato necessario aggiungere il numero zero all'insieme in quanto non ammette rappresentazione in base normalizzata.

Osserviamo che un elaboratore la cui memoria abbia le seguenti caratteristiche (riportate anche in Figura 1.1):

• t campi di memoria per la mantissa, ciascuno dei quali può assumere β differenti configurazioni (e perciò può memorizzare una cifra d_i),

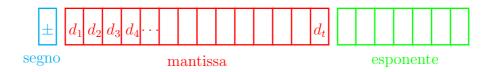


Figura 1.1: Locazione di memoria.

- un campo di memoria che può assumere m + M + 1 differenti configurazioni (e perciò può memorizzare i differenti valori p dell'esponente),
- un campo che può assumere due differenti configurazioni (e perciò può memorizzare il segno + o −),

è in grado di rappresentare tutti gli elementi dell'insieme $\mathbb{F}(\beta, t, m, M)$. In realtà poichè se $\beta = 2$ $d_1 = 1$, allora determinati standard non memorizzano la prima cifra della mantissa. Il più piccolo numero positivo appartenente all'insieme $\mathbb{F}(\beta, t, m, M)$ si ottiene prendendo la più piccola mantissa (ovvero 0.1) ed il più piccolo esponente

$$x = 0.1 \times \beta^{-m}$$

mentre il più grande ha tutte le cifre della mantissa uguali alla cifra più grande (ovvero $\beta-1$) ed il massimo esponente

$$x = 0. \underbrace{dd \dots dd}_{t} \beta^{M}, \qquad d = \beta - 1.$$

Consideriamo ora come esempio l'insieme $\mathbb{F}(2,2,2,2)$, cioè i numeri binari con mantissa di due cifre ed esponente compreso tra -2 e 2. Enumeriamo gli elementi di questo insieme. Poichè il numero zero non appartiene all'insieme dei numeri macchina viene rappresentato solitamente con mantissa nulla ed

Figura 1.2: Elementi dell'insieme $\mathbb{F}(2,2,2,2)$.

esponente -m.

$$\begin{aligned} p &= -2 & x = 0.10 \times 2^{-2} = 2^{-1} \times 2^{-2} = 2^{-3} = 0.125; \\ x &= 0.11 \times 2^{-2} = (2^{-1} + 2^{-2}) \times 2^{-2} = 3/16 = 0.1875; \end{aligned}$$

$$\begin{aligned} p &= -1 & x = 0.10 \times 2^{-1} = 2^{-1} \times 2^{-1} = 2^{-2} = 0.25; \\ x &= 0.11 \times 2^{-1} = (2^{-1} + 2^{-2}) \times 2^{-1} = 3/8 = 0.375; \end{aligned}$$

$$\begin{aligned} p &= 0 & x = 0.10 \times 2^0 = 2^{-1} \times 2^0 = 2^{-1} = 0.5; \\ x &= 0.11 \times 2^0 = (2^{-1} + 2^{-2}) \times 2^0 = 3/4 = 0.75; \end{aligned}$$

$$\begin{aligned} p &= 1 & x = 0.10 \times 2^1 = 2^{-1} \times 2^1 = 1; \\ x &= 0.11 \times 2^1 = (2^{-1} + 2^{-2}) \times 2^1 = 3/2 = 1.15; \end{aligned}$$

$$\begin{aligned} p &= 2 & x = 0.10 \times 2^2 = 2^{-1} \times 2^2 = 2; \\ x &= 0.11 \times 2^2 = (2^{-1} + 2^{-2}) \times 2^2 = 3; \end{aligned}$$

Nella Figura 1.2 è rappresentato l'insieme dei numeri macchina positivi appartenenti a $\mathbb{F}(2,2,2,2)$ (i numeri negativi sono esattamente simmetrici rispetto allo zero). Dalla rappresentazione dell'insieme dei numeri macchina si evincono le seguenti considerazioni:

- 1. L'insieme è discreto;
- 2. I numeri rappresentabili sono solo una piccola parte dell'insieme \mathbb{R} ;
- 3. La distanza tra due numeri reali consecutivi è β^{p-t} , infatti, considerando per semplicità numeri positivi, sia

$$x = +\beta^p \times (0.d_1, d_2, \dots, d_{t-1}, d_t)$$

il successivo numero macchina è

$$y = +\beta^p \times (0.d_1, d_2, \dots, d_{t-1}, \tilde{d}_t)$$

dove

$$\tilde{d}_t = d_t + 1.$$

La differenza è pertanto

$$y - x = +\beta^{p}(0.\underbrace{00...00}_{t-1}1) = \beta^{p-t}.$$

Nello standard IEEE (Institute of Electric and Electronic Engineers) singola precisione una voce di memoria ha 32 bit, dei quali 1 riservato al segno, 8 all'esponente e 23 alla mantissa. Allora $\beta=2,\,t=23,\,m=127$ e M=128. Per la doppia precisione si utilizzano 64 bit, di cui 1 per il segno, 11 per l'esponente e 52 per la mantissa. Dunque $\beta=2,\,t=52,\,m=1023$ e M=1024. Dopo aver compreso la struttura dell'insieme $\mathbb{F}(\beta,t,m,M)$ resta da capire come, assegnato un numero reale x sia possibile rappresentarlo nell'insieme dei numeri macchina, ovvero quale elemento $\tilde{x}\in\mathbb{F}(\beta,t,m,M)$ possa essergli associato in modo da commettere il più piccolo errore di rappresentazione possibile. Supponiamo ora che la base β sia un numero pari. Possono presentarsi diversi casi:

• Sia

$$x = \pm \beta^p \sum_{i=1}^n d_i \beta^{-i}$$

con $d_1 \neq 0$, $n \leq t$, e $-m \leq p \leq M$. Allora è evidente che $x \in \mathbb{F}(\beta, t, m, M)$ e pertanto verrà rappresentato esattamente su un qualunque elaboratore che utilizzi $\mathbb{F}(\beta, t, m, M)$ come insieme dei numeri di macchina.

• Sia

$$x = \pm \beta^p \sum_{i=1}^n d_i \beta^{-i}$$

con $n \leq t$ ma supponiamo che $p \notin [-m, M]$. Se p < -m allora x è più piccolo del più piccolo numero di macchina: in questo caso si dice che si è verificato un underflow (l'elaboratore interrompe la sequenza di calcoli e segnala con un messaggio l'underflow). Se p > M allora

vuol dire che x è più grande del più grande numero di macchina e in questo caso si dice che si è verificato un overflow (anche in questo caso l'elaboratore si ferma e segnala l'overflow, anche se tale eccezione può anche essere gestita via software in modo tale che l'elaborazione continui).

• Sia

$$x = \pm \beta^p \sum_{i=1}^n d_i \beta^{-i}$$

con l'esponente $-m \leq p \leq M$ ma n > t ed esiste un k > t tale che $d_k \neq 0$. Anche in questo caso poichè x ha più di t cifre significative $x \notin \mathbb{F}(\beta,t,m,M)$. È però possibile rappresentare x mediante un numero in \mathbb{F} con un'opportuna operazione di taglio delle cifre decimali che seguono la t-esima. Per questo si possono utilizzare due diverse tecniche di approssimazione:

1. troncamento di x alla t-esima cifra significativa

$$\tilde{x} = \operatorname{tr}(x) = \beta^p \times 0.d_1d_2\ldots d_t$$

2. arrotondamento di x alla t-esima cifra significativa

$$\tilde{x} = \operatorname{arr}(x) = \beta^p \times 0.d_1d_2\dots\tilde{d}_t$$

dove

$$\tilde{d}_t = \begin{cases} d_t + 1 & \text{se } d_{t+1} \ge \beta/2\\ d_t & \text{se } d_{t+1} < \beta/2. \end{cases}$$

Per esempio se x=0.654669235 e t=5 allora

$$tr(x) = 0.65466, \qquad arr(x) = 0.65467$$

In pratica quando il numero reale x non appartiene all'insieme $\mathbb{F}(\beta, t, m, M)$ esistono sicuramente due numeri $a, b \in \mathbb{F}(\beta, t, m, M)$, tali che

$$a < x < b. (1.1)$$

Supponendo per semplicità x > 0 si ha che

$$tr(x) = a$$

mentre se $x \ge (a+b)/2$ allora

$$arr(x) = b$$

altrimenti

$$arr(x) = a$$
.

L'arrotondamento è un'operazione che fornisce sicuramente un risultato più preciso (come risulterà evidente nel prossimo paragrafo), ma può dar luogo ad overflow. Infatti se

$$x = 0.dddddddddd \cdots \times \beta^M$$

con $d = \beta - 1$, allora

$$arr(x) = 1.0\beta^M = 0.1\beta^{M+1} \notin \mathbb{F}(\beta, t, m, M).$$

La rappresentazione di $x \in \mathbb{R}$ attraverso $\tilde{x} \in \mathbb{F}(\beta, t, m, M)$ si dice rappresentazione in virgola mobile di x o rappresentazione floating point, con troncamento se $\tilde{x} = \operatorname{tr}(x)$, con arrotondamento se $\tilde{x} = \operatorname{arr}(x)$. Talvolta il numero macchina che rappresenta $x \in \mathbb{R}$ viene indicato con fl(x).

1.4 Errore Assoluto ed Errore Relativo

Una volta definite le modalità per associare ad un numero reale x la sua rappresentazione macchina \tilde{x} si tratta di stabilire l'errore che si commette in questa operazione di approssimazione. Si possono definire due tipi di errori, l'errore assoluto e l'errore relativo.

Se $x \in \mathbb{R}$ ed \tilde{x} è una sua appross
mazione allora si definisce errore assoluto la quantità

$$E_a = |\tilde{x} - x|$$

mentre se $x \neq 0$ si definisce errore relativo la quantità

$$E_r = \frac{|\tilde{x} - x|}{|x|}.$$

Se $E_r \leq \beta^{-q}$ allora si dice che \tilde{x} ha almeno q cifre significative corrette. Nel seguito assumeremo x > 0 e supporremo anche che la rappresentazione di x in $\mathbb{F}(\beta, t, m, M)$ non dia luogo ad underflow o overflow. Calcoliamo ora una

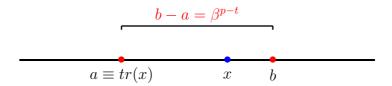


Figura 1.3: Stima dell'errore di rappresentazione nel caso di troncamento.

maggiorazione per tali errori nel caso in cui \tilde{x} sia il troncamento di x > 0. Nella Figura 1.3 a e b rappresentano i due numeri macchina tali che sia vera la relazione (1.1). È evidente ch risulta

$$|tr(x) - x| < b - a = \beta^{p-t}.$$

Per maggiorare l'errore relativo osserviamo che

$$|x| = +\beta^p \times 0.d_1d_2d_3 \cdots \ge \beta^p \times 0.1 = \beta^{p-1}.$$

da cui

$$\frac{1}{|x|} \le \beta^{1-p}$$

e quindi

$$\frac{|tr(x) - x|}{|x|} \le \beta^{p-t} \times \beta^{1-p} = \beta^{1-t}.$$
 (1.2)

Passiamo ora alla valutazione degli errori quando

$$\tilde{x} = arr(x).$$

Nella Figura 1.4 a e b rappresentano i due numeri macchina tali che sia vera la relazione (1.1). Se x>0 si trova a sinistra del punto medio (a+b)/2 allora l'arrotondamento coincide con il valore a, se si trova nel punto medio oppure alla sua destra allora coincide con b. È evidente che il massimo errore si ottiene quando x coincide con il punto medio tra a e b risulta

$$|arr(x) - x| \le \frac{1}{2}(b - a) = \frac{1}{2}\beta^{p-t}.$$

Per maggiorare l'errore relativo procediamo come nel caso del troncamento di x:

$$\frac{|arr(x) - x|}{|x|} \le \frac{1}{2}\beta^{p-t} \times \beta^{1-p} = \frac{1}{2}\beta^{1-t}.$$
 (1.3)

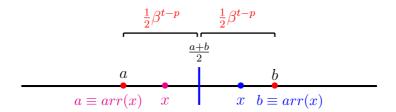


Figura 1.4: Stima dell'errore di rappresentazione nel caso di arrotondamento.

Le quantità che compaiono a destra delle maggiorazioni (1.2) e (1.3), ovvero

$$u = \beta^{1-t}$$

oppure

$$u = \frac{1}{2}\beta^{1-t}$$

sono dette precisione di macchina o zero macchina per il troncamento (o per l'arrotondamento, in base alla tecnica in uso).

Posto

$$\varepsilon_x = \frac{\tilde{x} - x}{x}, \qquad |\varepsilon| \le u$$

risulta

$$\tilde{x} = x(1 + \varepsilon_x) \tag{1.4}$$

che fornisce la relazione tra un numero $x \in \mathbb{R}$ e la sua rappresentazione macchina.

1.4.1 Operazioni Macchina

Se $x, y \in \mathbb{F}(\beta, t, m, M)$ è chiaro che il risultato di un'operazione aritmetica tra x e y non è detto che sia un numero macchina, inoltre è chiaro che quanto detto per la rappresentazione dei numeri reali sia valido anche per tale risultato. Se · è una delle quattro operazioni aritmetiche di base allora affinchè il risultato sia un numero macchina deve accadere che

$$x \cdot y = fl(x \cdot y). \tag{1.5}$$

L'operazione definita dalla relazione (1.5) è detta operazione macchina. L'operaziona macchina associata a \cdot viene indicata con \odot e deve soddisfare anch'essa la relazione (1.4), ovvero dev'essere:

$$x \odot y = (x \cdot y)(1 + \varepsilon), \qquad |\varepsilon| < u$$
 (1.6)

per ogni $x,y\in\mathbb{F}(\beta,t,m,M)$ tali che $x\odot y$ non dia luogo ad overflow o underflow. Si può dimostrare che

$$x \odot y = \operatorname{tr}(x \cdot y)$$

е

$$x \odot y = arr(x \cdot y)$$

soddisfano la (1.6) e dunque danno luogo ad operazioni di macchina. Le quattro operazioni così definite danno luogo alla aritmetica di macchina o aritmetica finita. La somma algebrica macchina (addizione e sottrazione) tra due numeri $x, y \in \mathbb{F}(\beta, t, m, M)$ richiede le seguenti fasi:

- Si scala la mantissa del numero con l'esponente minore in modo tale che i due addendi abbiano lo stesso esponente (ovvero quello dell'esponente maggiore);
- 2. Si esegue la somma tra le mantisse;
- 3. Si normalizza il risultato aggiustando l'esponente in modo tale che la mantissa sia un numero minore di 1.
- 4. Si arrotonda (o si tronca) la mantissa alle prime t cifre;

Consideriamo per esempio i numeri $x, y \in \mathbb{F}(10, 5, m, M)$

$$x = 0.78546 \times 10^2, \qquad y = 0.61332 \times 10^{-1}$$

e calcoliamo il numero macchina $x \oplus y$.

- 1. Scaliamo il numero y fino ad ottenere esponente 2 (quindi si deve spostare il punto decimale di 3 posizioni), $y=0.00061332\times 10^2$;
- 2. Sommiamo le mantisse 0.78546 + 0.00061332 = 0.78607332;
- 3. Questa fase non è necessaria perchè la mantissa è già minore di 1;
- 4. Si arrotonda alla quinta cifra decimale ottenendo

$$x \oplus y = 0.78607 \times 10^2.$$

Un fenomeno particolare, detto cancellazione di cifre significative, si verifica quando si effettua la sottrazione tra due numeri reali all'incirca uguali. Consideriamo per esempio la differenza tra i due numeri

$$x = 0.75868531 \times 10^2, \qquad y = 0.75868100 \times 10^2$$

nell'insieme $\mathbb{F}(10,5,m,M)$. Risulta

$$fl(x) = 0.75869 \times 10^2$$
, $fl(y) = 0.75868 \times 10^2$

e quindi

$$fl(fl(x) - fl(y)) = 0.1 \times 10^{-2}$$

mentre

$$x - y = 0.431 \times 10^{-3}$$

Calcolando l'errore relativo sul risultato dell'operazione si trova

$$E_r \simeq 1.32016$$

che è un valore piuttosto alto.

Per esemplificare il fenomeno appena descritto consideriamo il problema di calcolare (per esempio in MatLab) le radici dell'equazione di secondo grado

$$p(x) = ax^2 + bx + c$$

applicando la consueta formula

$$x_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}, \qquad x_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}.$$
 (1.7)

In alternativa si potrebbe calcolare la radice più grande in modulo

$$r_1 = \frac{-b - segno(b)\sqrt{b^2 - 4ac}}{2a} \tag{1.8}$$

e poi, sfruttando la proprietà che il prodotto tra le radici è pari a c/a, ottenere la seconda radice ponendo

$$r_2 = \frac{c}{ar_1}. (1.9)$$

Considerando il polinomio

$$p(x) = x^2 - (10^7 + 10^{-7})x + 1$$

che ammette come radici 10^7 e 10^{-7} , applicando le formule (1.7), si ottiene

$$x_1 = 10^7, \qquad x_2 = 9.9652e - 008$$

mentre utilizzando le formule (1.8) e (1.9) i risultati sono esatti

$$r_1 = 10^7, \qquad r_2 = 10^{-7}.$$

Nel primo caso il calcolo della radice x_1 avviene effettuando la differenza tra due numeri (ovvero -b e $\sqrt{b^2-4ac}$) che sono molto vicini tra loro e pertanto generano il suddetto fenomeno. Nel secondo caso non viene effettuata alcuna differenza e pertanto il risultato è corretto.

Il prodotto macchina tra due numeri $x, y \in \mathbb{F}(\beta, t, m, M)$ richiede le seguenti fasi:

- 1. Si esegue il prodotto tra le mantisse;
- 2. Si sommano gli esponenti, normalizzando, se necessario, la mantissa ad un numero minore di 1;
- 3. Si esegue l'arrotondamento (o il troncamento) alle prime t cifre.

Consideriamo per esempio il prodotto tra i due numeri

$$x = 0.11111 \times 10^3, \qquad y = 0.52521 \times 10^2$$

nell'insieme $\mathbb{F}(10, 5, m, M)$.

- 1. Il prodotto delle mantisse produce 0.05835608;
- 2. Somma degli esponenti $x * y = 0.58356 \times 10^4$.
- 3. L'arrotondamento a 5 cifre produce 0.58356×10^{-1} ;

La divisione macchina tra due numeri $x,y\in\mathbb{F}(\beta,t,m,M)$ richiede le seguenti fasi:

- 1. Si scala il dividendo x finchè la sua mantissa non risulti minore di quella del divisore y;
- 2. Si esegue la divisione tra le mantisse;
- 3. Si esegue l'arrotondamento (o il troncamento) alle prime t cifre;
- 4. Si sottraggono gli esponenti.

Consideriamo la divisione tra i due numeri

$$x = 0.12100 \times 10^5, \qquad y = 0.11000 \times 10^2$$

nell'insieme $\mathbb{F}(10, 5, m, M)$.

- 1. Scaliamo il dividendo di una cifra decimale 0.012100;
- 2. Dividiamo le mantisse 0.012100/0.11000 = 0.11000;
- 3. Il troncamento fornisce lo stesso numero 0.11000;
- 4. Si sottraggono gli esponenti ottenendo il risultato

$$x \oslash y = 0.11000 \times 10^3$$
.

Si può dimostrare che valgono le seguenti proprietà:

- 1. L'insieme $\mathbb{F}(\beta, t, m, M)$ non è chiuso rispetto alle operazioni macchina;
- 2. L'elemento neutro per la somma non è unico: infatti consideriamo i due numeri macchia

$$x = 0.15678 \times 10^3, \qquad y = 0.25441 \times 10^{-2},$$

appartenenti all'insieme $\mathbb{F}(10,5,m,M)$, innanzitutto si scala y

$$y = 0.0000025441 \times 10^3$$

sommando le mantisse si ottiene 0.1567825441 mentre l'arrotondamento fornisce il risultato finale

$$x \oplus y = 0.15678 \times 10^3 = x.$$

- 3. L'elemento neutro per il prodotto non è unico;
- 4. Non vale la proprietà associativa di somma e prodotto;
- 5. Non vale la proprietà distributiva della somma rispetto al prodotto.

Capitolo 2

Equazioni non Lineari

2.1 Introduzione

Le radici di un'equazione non lineare f(x) = 0 non possono, in generale, essere espresse esplicitamente e anche se ciò è possibile spesso l'espressione si presenta in forma talmente complicata da essere praticamente inutilizzabile. Di conseguenza per poter risolvere equazioni di questo tipo siamo obbligati ad utilizzare metodi numerici che sono, in generale, di tipo iterativo, cioè partendo da una (o in alcuni casi più) approssimazioni della radice, producono una successione x_0, x_1, x_2, \ldots , convergente alla radice. Per alcuni di questi metodi per ottenere la convergenza è sufficiente la conoscenza di un intervallo [a, b] che contiene la soluzione, altri metodi richiedono invece la conoscenza di una buona approssimazione iniziale. Talvolta è opportuno utilizzare in maniera combinata due metodi, uno del primo tipo e uno del secondo. Prima di analizzare alcuni metodi per l'approssimazione delle radici dell'equazione f(x) = 0 diamo la definizione di molteplicità di una radice.

Definizione 2.1.1 Sia $f \in C^r([a,b])$ per un intero r > 0. Una radice α di f(x) si dice di molteplicità r se

$$\lim_{x \to \alpha} \frac{f(x)}{(x - \alpha)^r} = \gamma, \qquad \gamma \neq 0, \gamma \neq \pm \infty.$$
 (2.1)

Se α è una radice della funzione f(x) di molteplicità r allora risulta

$$f(\alpha) = f'(\alpha) = \dots = f^{(r-1)}(\alpha) = 0, \qquad f^{(r)}(\alpha) = \gamma \neq 0.$$

2.2 Localizzazione delle radici

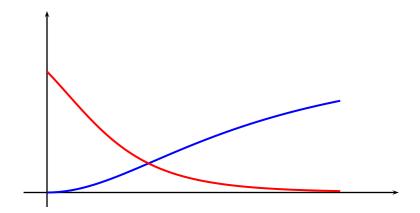
Nei successivi paragrafi saranno descritti alcuni metodi numerici per il calcolo approssimato delle radici di un'equazione non lineare. Tali metodi numerici sono di tipo iterativo, ovvero consistono nel definire una successione (o più successioni), che, a partire da un'assegnata approssimazione iniziale (nota), converga alla radice α in un processo al limite. Infatti poichè non esistono tecniche generali che consentano di trovare l'espressione esplicita di α in un numero finito di operazioni, allora questa può essere calcolata in modo approssimato solo in modo iterativo. Questa perculiarità tuttavia richiede che sia nota appunto un'approssimazione iniziale o, almeno, un intervallo di appartenenza. Il problema preliminare è quello di localizzare la radice di una funzione, problema che viene affrontato in modo grafico. Per esempio considerando la funzione

$$f(x) = \sin(\log(x^2 + 1)) - \frac{e^{-x}}{x^2 + 1}$$

risulta immediato verificare che il valore dell'ascissa in cui si annulla è quello in cui si intersecano i grafici delle funzioni

$$g(x) = \sin(\log(x^2 + 1))$$
 $h(x) = \frac{e^{-x}}{x^2 + 1}.$

Un modo semplice per stimare tale valore è quello di tracciare i grafici delle due funzioni, come riportato nella seguente figura in cui il grafico di h(x) è in rosso, mentre quello di g(x) è blu, e l'intervallo di variabilità di x è [0, 2.5].



Calcolando le funzioni in valori compresi in tale intervallo di variabilità si può restringere lo stesso intervallo, infatti risulta

$$g(0.5) = 0.2213 < h(0.5) = 0.48522$$

е

$$g(1) = 0.63896 > h(1) = 0.18394,$$

da cui si deduce che $\alpha \in]0.5, 1[$.

2.3 Il Metodo di Bisezione

Sia $f:[a,b]\to\mathbb{R},\ f\in\mathcal{C}([a,b])$, e sia f(a)f(b)<0. Sotto tali ipotesi esiste sicuramente almeno un punto nell'intervallo [a,b] in cui la funzione si annulla. L'idea alla base del Metodo di Bisezione (o metodo delle bisezioni) consiste nel costruire una successione di intervalli $\{I_k\}_{k=0}^{\infty}$, con $I_0=[a_0,b_0]\equiv[a,b]$, tali che:

- 1. $I_{k+1} \subset I_k$;
- 2. $\alpha \in I_k, \forall k > 0$;
- 3. l'ampiezza di I_k tende a zero per $k \to +\infty$.

La successione degli I_k viene costruita nel seguente modo. Innanzitutto si pone

$$I_0 = [a_0, b_0] = [a, b]$$

e si calcola il punto medio

$$c_1 = \frac{a_0 + b_0}{2}.$$

Se $f(c_1) = 0$ allora $\alpha = c_1$, altrimenti si pone:

$$I_1 = [a_1, b_1] \equiv \begin{cases} a_1 = a_0 & b_1 = c_1 & \text{se } f(a_0)f(c_1) < 0 \\ a_1 = c_1 & b_1 = b_0 & \text{se } f(a_0)f(c_1) > 0. \end{cases}$$

Ora, a partire da $I_1 = [a_1, b_1]$, si ripete la stessa procedura. In generale al passo k si calcola

$$c_{k+1} = \frac{a_k + b_k}{2}.$$

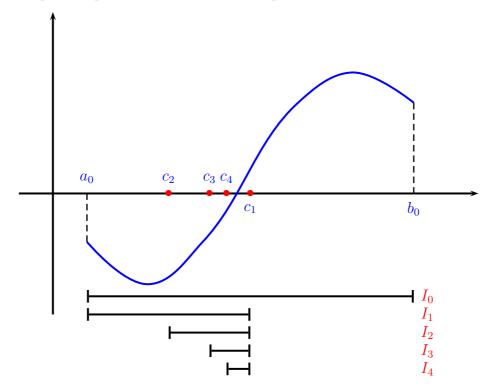
Se $f(c_{k+1}) = 0$ allora $\alpha = c_{k+1}$, altrimenti si pone:

$$I_{k+1} = [a_{k+1}, b_{k+1}] \equiv \begin{cases} a_{k+1} = a_k & b_{k+1} = c_k & \text{se } f(a_k) f(c_{k+1}) < 0 \\ a_{k+1} = c_{k+1} & b_{k+1} = b_k & \text{se } f(a_k) f(c_{k+1}) > 0. \end{cases}$$

La successione di intervalli I_k così costruita soddisfa automaticamente le condizioni 1) e 2). Per quanto riguarda la 3) abbiamo:

$$b_k - a_k = \frac{b_{k-1} - a_{k-1}}{2} = \frac{b_0 - a_0}{2^k}$$

e dunque l'ampiezza di I_k tende a zero quando $k \to +\infty$.



Generalmente costruendo le successioni $\{a_k\}$ e $\{b_k\}$ accade che la condizione $f(c_k) = 0$, per un certo valore k, non si verifica mai a causa degli errori di arrotondamento. Quindi è necessario stabilire un opportuno criterio di stop che ci permetta di fermare la procedura quando riteniamo di aver raggiunto una precisione soddisfacente. Per esempio si può imporre:

$$b_k - a_k \le \varepsilon \tag{2.2}$$

dove ε è una prefissata tolleranza. La (2.2) determina anche un limite per il numero di iterate infatti:

$$\frac{b_0 - a_0}{2^k} \le \varepsilon \qquad \Rightarrow \qquad k > \log_2\left(\frac{b_0 - a_0}{\varepsilon}\right).$$

Poichè $b_k - \alpha \leq b_k - a_k$, il criterio (2.2) garantisce che α è approssimata da c_{k+1} con un errore assoluto minore di ε . Se $0 \notin [a, b]$ si può usare come criterio di stop

$$\frac{b_k - a_k}{\min(|a_k|, |b_k|)} \le \varepsilon \tag{2.3}$$

che garantisce che α è approssimata da c_{k+1} con un errore relativo minore di ε . Un ulteriore criterio di stop è fornito dal test:

$$|f(c_k)| \le \varepsilon. \tag{2.4}$$

È comunque buona norma utilizzare due criteri di stop insieme, per esempio (2.2) e (2.4) oppure (2.3) e (2.4).

2.3.1 Il metodo della falsa posizione

Una variante del metodo delle bisezioni è appunto il metodo della falsa posizione. Partendo sempre da una funzione f(x) continua in un intervallo [a,b] tale che f(a)f(b) < 0, in questo caso si approssima la radice considerando l'intersezione della retta passante per i punti (a,f(a)) e (b.f(b)) con l'asse x. L'equazione della retta è

$$y = f(a) + \frac{f(b) - f(a)}{b - a}(x - a)$$

pertanto il punto c_1 , sua intersezione con l'asse x, è:

$$c_1 = a - f(a)\frac{b - a}{f(b) - f(a)}.$$

Si testa a questo punto l'appartenenza della radice α ad uno dei due intervalli $[a, c_1]$ e $[c_1, b]$ e si procede esattamente come nel caso del metodo delle bisezioni, ponendo

$$[a_1, b_1] \equiv \begin{cases} a_1 = a, & b_1 = c_1 & \text{se } f(a)f(c_1) < 0 \\ a_1 = c_1, & b_1 = b & \text{se } f(a)f(c_1) > 0. \end{cases}$$

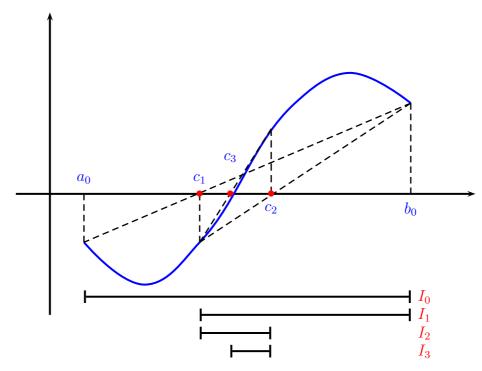
Ad un generico passo k si calcola

$$c_k = a_{k-1} - f(a_{k-1}) \frac{b_{k-1} - a_{k-1}}{f(b_{k-1}) - f(a_{k-1})}$$

e si pone

$$[a_k, b_k] \equiv \begin{cases} a_k = a_{k-1} & b_k = c_k & \text{se } f(a_{k-1})f(c_k) < 0 \\ a_k = c_k & b_k = b_{k-1} & \text{se } f(a_{k-1})f(c_k) > 0. \end{cases}$$

Anche per questo metodo è possibile dimostrare la convergenza nella sola ipotesi di continuità della funzione f(x). Nella seguente figura è rappresentato graficamente il metodo della falsa posizione.



function [alfa,k]=bisezione(f,a,b,tol)

%

% La funzione approssima la radice con il metodo di bisezione

%

% Parametri di input

```
% f = funzione della quale calcolare la radice
% a = estremo sinistro dell'intervallo
% b = estremo destro dell'intervallo
% tol = precisione fissata
% Parametri di output
% alfa = approssimazione della radice
% k = numero di iterazioni
%
if nargin==3
    tol = 1e-8; % Tolleranza di default
end
fa = feval(f,a);
fb = feval(f,b);
if fa*fb>0
    error('Il metodo non e'' applicabile')
end
c = (a+b)/2;
fc = feval(f,c);
k = 0;
while (b-a)>tol | abs(fc)>tol
    if fa*fc<0
        b = c;
        fb = fc;
    else
        a = c;
        fa = fc;
    end
    c = (a+b)/2;
    fc = feval(f,c);
    if nargout==2
        k = k+1;
    end
end
alfa = c;
return
```

2.4 Metodi di Iterazione Funzionale

Il metodo di bisezione può essere applicato ad una vastissima classe di funzioni, in quanto per poter essere applicato si richiede solo la continuità della funzione. Tuttavia ha lo svantaggio di risultare piuttosto lento, infatti ad ogni passo si guadagna in precisione una cifra binaria. Per ridurre l'errore di un decimo sono mediamente necessarie 3.3 iterazioni. Inoltre la velocità di convergenza non dipende dalla funzione f(x) poichè il metodo utilizza esclusivamente il segno assunto dalla funzione in determinati punti e non il suo valore. Il metodo delle bisezioni può essere comunque utilizzato con profitto per determinare delle buone approssimazioni della radice α che possono essere utilizzate dai metodi iterativi che stiamo per descrivere.

Infatti richiedendo alla f supplementari condizioni di regolarità è possibile individuare una vasta classe di metodi che forniscono le stesse approssimazioni del metodo di bisezione utilizzando però un numero di iterate molto minore. In generale questi metodi sono del tipo:

$$x_{k+1} = g(x_k)$$
 $k = 0, 1, 2, \dots$ (2.5)

dove x_0 è un'assegnato valore iniziale e forniscono un'approssimazione delle soluzioni dell'equazione

$$x = g(x). (2.6)$$

Ogni punto α tale che $\alpha = g(\alpha)$ si dice punto fisso o punto unito di g. Per poter applicare uno schema del tipo (2.5) all'equazione f(x) = 0, bisogna prima trasformare questa nella forma (2.6). Ad esempio se [a, b] è l'intervallo di definizione di f ed h(x) è una qualunque funzione tale che $h(x) \neq 0$, per ogni $x \in [a, b]$, si può porre:

$$g(x) = x - \frac{f(x)}{h(x)}. (2.7)$$

Ovviamente ogni punto fisso di g è uno zero di f e viceversa.

Teorema 2.4.1 Sia $g \in \mathcal{C}([a,b])$ e assumiamo che la successione $\{x_k\}$ generata da (2.5) sia contenuta in [a,b]. Allora se tale successione converge, il limite è il punto fisso di g.

Dimostrazione.

$$\alpha = \lim_{k \to +\infty} x_{k+1} = \lim_{k \to +\infty} g(x_k) = g\left(\lim_{k \to +\infty} x_k\right) = g(\alpha). \ \Box$$

Teorema 2.4.2 Sia α punto fisso di g e $g \in C^1([\alpha - \rho, \alpha + \rho])$, per qualche $\rho > 0$, se si suppone che

$$|g'(x)| < 1$$
, per ogni $x \in [\alpha - \rho, \alpha + \rho]$

allora valgono le sequenti asserzioni:

- 1. se $x_0 \in [\alpha \rho, \alpha + \rho]$ allora anche $x_k \in [\alpha \rho, \alpha + \rho]$ per ogni k;
- 2. la successione $\{x_k\}$ converge ad α ;
- 3. α è l'unico punto fisso di g(x) nell'intervallo $[\alpha \rho, \alpha + \rho]$.

Dimostrazione. Sia

$$\lambda = \max_{|x-\alpha| \le \rho} |g'(x)| < 1.$$

Innanzitutto dimostriamo per induzione che tutti gli elementi della successione $\{x_k\}$ sono contenuti nell'intervallo di centro α e ampiezza 2ρ . Per k=0 si ha banalmente $x_0 \in [\alpha-\rho,\alpha+\rho]$. Assumiamo che $|x_k-\alpha| \leq \rho$ e dimostriamolo per k+1.

$$|x_{k+1} - \alpha| = |g(x_k) - g(\alpha)| = |g'(\xi_k)| |x_k - \alpha|$$

dove $|\xi_k - \alpha| < |x_k - \alpha| \le \rho$ e l'ultima uguaglianza segue dall'applicazione del teorema di Lagrange. Pertanto

$$|x_{k+1} - \alpha| < \lambda |x_k - \alpha| < |x_k - \alpha| < \rho.$$

Proviamo ora che:

$$\lim_{k \to +\infty} x_k = \alpha.$$

Da $|x_{k+1} - \alpha| \le \lambda |x_k - \alpha|$ segue

$$|x_{k+1} - \alpha| \le \lambda^{k+1} |x_0 - \alpha|.$$

Conseguentemente qualunque sia x_0 si ha:

$$\lim_{k \to +\infty} |x_k - \alpha| = 0 \Leftrightarrow \lim_{k \to +\infty} x_k = \alpha.$$

Per dimostrare l'unicità del punto ragioniamo per assurdo che supponiamo chi punti fissi sono due, $\alpha, \beta \in [\alpha - \rho, \alpha + \rho]$. Allora

$$|\alpha - \beta| = |g(\alpha) - g(\beta)| = |g'(\xi)||\alpha - \beta|$$

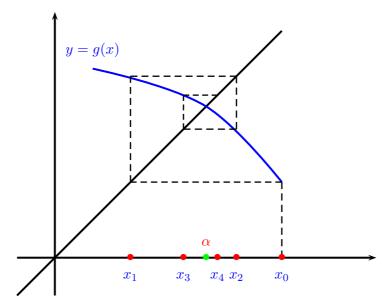


Figura 2.1: Interpretazione geometrica del processo $x_{k+1} = g(x_k)$, se $-1 < g'(\alpha) \le 0$.

con $\xi \in [\alpha - \rho, \alpha + \rho]$. Poichè $|g'(\xi)| < 1$ si ha

$$|\alpha - \beta| < |\alpha - \beta|$$

e ciò è assurdo. \square

Nelle figure 2.2 e 2.1 è rappresentata l'interpretazione geometrica di un metodo di iterazione funzionale in ipotesi di convergenza.

Definizione 2.4.1 Un metodo iterativo del tipo (2.5) si dice localmente convergente ad una soluzione α del problema f(x) = 0 se esiste un intervallo [a,b] contenente α tale che, per ogni $x_0 \in [a,b]$, la successione generata da (2.5) converge a α .

Come abbiamo già visto nel caso del metodo delle bisezioni anche per metodi di iterazione funzionale è necessario definire dei criteri di arresto per il calcolo delle iterazioni. Teoricamente, una volta stabilita la precisione voluta, ε , si dovrebbe arrestare il processo iterativo quando l'errore al passo k

$$e_k = |\alpha - x_k|$$

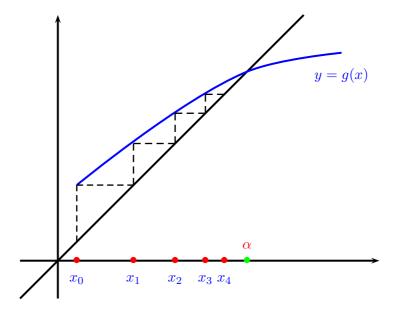


Figura 2.2: Interpretazione geometrica del processo $x_{k+1} = g(x_k)$, se $0 \le g'(\alpha) < 1$.

risulta minore della tolleranza prefissata ε . In pratica l'errore non può essere noto quindi è necessario utilizzare qualche stima. Per esempio si potrebbe considerare la differenza tra due iterate consecutive e fermare il calcolo degli elementi della successione quando

$$|x_{k+1} - x_k| \le \varepsilon,$$

oppure

$$\frac{|x_{k+1} - x_k|}{\min(|x_{k+1}|, |x_k|)} \le \varepsilon \qquad |x_{k+1}|, |x_k| \ne 0$$

se i valori hanno un ordine di grandezza particolarmente elevato. Una stima alternativa valuta il residuo della funzione rispetto al valore in α , cioè

$$|f(x_k)| \le \varepsilon.$$

2.4.1 Ordine di Convergenza

Per confrontare differenti metodi iterativi che approssimano la stessa radice α di f(x) = 0, si può considerare la velocità con cui tali successioni convergono

verso α . Lo studio della velocità di convergenza passa attraverso il concetto di ordine del metodo.

Definizione 2.4.2 Sia $\{x_k\}_{k=0}^{\infty}$ una successione convergente ad α e tale che $x_k \neq \alpha$, per ogni k. Se esiste un numero reale $p \geq 1$ tale che

$$\lim_{k \to +\infty} \frac{|x_{k+1} - \alpha|}{|x_k - \alpha|^p} = \gamma \qquad con \quad \begin{cases} 0 < \gamma \le 1 & \text{se } p = 1\\ \gamma > 0 & \text{se } p > 1 \end{cases}$$
 (2.8)

allora si dice che la successione ha ordine di convergenza p. La costante γ prende il nome di costante asintotica di convergenza.

In particolare se p=1 e $0<\gamma<1$ allora la convergenza si dice lineare, mentre se p>1 allora la convergenza si dice genericamente superlineare, per esempio se p=2 la convergenza si dice quadratica, se p=3 cubica e così via.

Osservazione. La relazione (2.8) implica che esiste una costante positiva β ($\beta \simeq \gamma$) tale che, per k sufficientemente grande:

$$|x_{k+1} - \alpha| \le \beta |x_k - \alpha|^p \tag{2.9}$$

ed anche

$$\frac{|x_{k+1} - \alpha|}{|\alpha|} \le \beta |\alpha|^{p-1} \left| \frac{x_k - \alpha}{\alpha} \right|^p. \tag{2.10}$$

Le (2.9) e (2.10) indicano che la riduzione di errore (assoluto o relativo) ad ogni passo è tanto maggiore quanto più alto è l'ordine di convergenza e, a parità di ordine, quanto più piccola è la costante asintotica di convergenza. In generale l'ordine di convergenza è un numero reale maggiore o uguale a 1. Tuttavia per i metodi di iterazione funzionale di tipo (2.5) è un numero intero per il quale vale il seguente teorema.

Teorema 2.4.3 Sia $\{x_k\}_{k=0}^{\infty}$ una successione generata dallo schema (2.5) convergente ad α , punto fisso di g(x), funzione sufficientemente derivabile in un intorno di α . La successione ha ordine di convergenza $p \geq 1$ se e solo se

$$g'(\alpha) = g''(\alpha) = \dots = g^{(p-1)}(\alpha) = 0, \qquad g^{(p)}(\alpha) \neq 0.$$
 (2.11)

Dimostrazione.

$$x_{k+1} - \alpha = g(x_k) - g(\alpha)$$

$$= g'(\alpha)(x_k - \alpha) + \frac{g''(\alpha)}{2!}(x_k - \alpha)^2 + \dots$$

$$\dots + \frac{g^{(p-1)}(\alpha)}{(p-1)!}(x_k - \alpha)^{p-1} + \frac{g^{(p)}(\xi_k)}{p!}(x_k - \alpha)^p$$

dove ξ è compreso tra x_k e α . Quindi se vale l'ipotesi (2.11) risulta

$$\frac{|x_{k+1} - \alpha|}{|x_k - \alpha|^p} = \frac{g^{(p)}(\xi_k)}{p!}$$

e quindi

$$\lim_{k \to \infty} \frac{|x_{k+1} - \alpha|}{|x_k - \alpha|^p} = \frac{|g^{(p)}(\alpha)|}{p!}.$$

Viceversa, se l'ordine è p, sia $g^{(i)}(\alpha)$ la prima derivata non nulla nel precedente sviluppo in serie di Taylor intorno al punto α . Se fosse $i \neq p$ ripetendo lo stesso ragionamento appena fatto l'ordine sarebbe $i \neq p$, in contraddizione con l'ipotesi fatta. Quindi deve essere necessariamente i = p e valgono le relazioni (2.11). \square

Osservazione. L'ordine di convergenza p può essere anche un numero non intero. In questo caso, posto q = [p], se $g \in \mathcal{C}^q([a,b])$ si ha anche

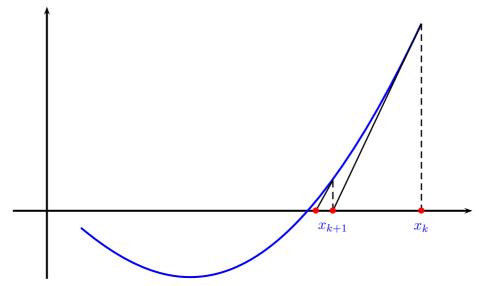
$$g'(\alpha) = g''(\alpha) = \dots = g^{(q)}(\alpha) = 0,$$

e che g non ha derivata di ordine q+1 altrimenti per il precedente teorema tutte le successioni ottenute da (2.5) a partire da $x_0 \in [\alpha - \rho, \alpha + \rho]$ avrebbero ordine almeno q+1.

Definizione 2.4.3 Un metodo iterativo convergente ad α si dice di ordine p (di ordine almeno p) se tutte le successioni ottenute al variare del punto iniziale in un opportuno intorno di α convergono con ordine di convergenza p (almeno p).

2.4.2 Metodo di Newton-Raphson

Nell'ipotesi che f sia derivabile ed ammetta derivata prima continua allora un altro procedimento per l'approssimazione dello zero della funzione f(x) è il metodo di Newton-Raphson, noto anche come metodo delle tangenti. Nella figura seguente è riportata l'interpretazione geometrica di tale metodo. A partire dall'approssimazione x_0 si considera la retta tangente la funzione f passante per il punto P_0 di coordinate $(x_0, f(x_0))$. Si calcola l'ascissa x_1 del punto di intersezione tra tale retta tangente e l'asse delle x e si ripete il procedimento a partire dal punto P_1 di coordinate $(x_1, f(x_1))$. Nella seguente figura è rappresentato graficamente il metodo di Newton-Raphson.



Per ricavare la funzione iteratrice del metodo consideriamo l'equazione della retta tangente la funzione y = f(x) nel punto di coordinate $(x_k, f(x_k))$

$$y - f(x_k) = f'(x_k)(x - x_k).$$

Posto y = 0 ricaviamo l'espressione di x che diventa il nuovo elemento della successione x_{k+1} :

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$
 $k = 0, 1, 2, \dots$ (2.12)

che equivale, scegliendo in (2.7) h(x) = f'(x), al metodo di iterazione funzionale in cui la funzione g(x) è

$$g(x) = x - \frac{f(x)}{f'(x)}.$$
 (2.13)

Per la convergenza el'ordine del metodo di Newton-Raphson vale il seguente teorema.

Teorema 2.4.4 Sia $f \in C^3([a,b])$, tale che $f'(x) \neq 0$, per $x \in [a,b]$, dove [a,b] è un opportuno intervallo contenente α , allora valgono le seguenti proposizioni:

- 1. esiste un intervallo $[\alpha \rho, \alpha + \rho]$, tale che, scelto x_0 appartenente a tale intervallo, la successione definita dal metodo di Newton-Raphson è convergente ad α ;
- 2. la convergenza è di ordine $p \geq 2$.

Dimostrazione. Per valutare la convergenza del metodo calcoliamo la derivata prima della funzione iteratrice:

$$g'(x) = 1 - \frac{[f'(x)]^2 - f(x)f''(x)}{[f'(x)]^2} = \frac{f(x)f''(x)}{[f'(x)]^2}.$$

Poichè $f'(\alpha) \neq 0$ risulta:

$$g'(\alpha) = \frac{f(\alpha)f''(\alpha)}{[f'(\alpha)]^2} = 0$$

quindi, fissato un numero positivo $\kappa < 1$, esiste $\rho > 0$ tale che per ogni $x \in [\alpha - \rho, \alpha + \rho]$ si ha $|g'(x)| < \kappa$ e quindi vale il teorema di convergenza 2.4.2.

Per dimostrare la seconda parte del teorema si deve calcolare la derivata seconda di g(x):

$$g''(x) = \frac{[f'(x)f''(x) + f(x)f'''(x)][f'(x)]^2 - 2f(x)f'(x)[f''(x)]^2}{[f'(x)]^4}.$$

Calcolando la derivata seconda in $x = \alpha$ risulta

$$g''(\alpha) = \frac{f''(\alpha)}{f'(\alpha)} \tag{2.14}$$

ne segue che se $f''(\alpha) \neq 0$ allora anche $g''(\alpha) \neq 0$ e quindi, applicando il Teorema 2.4.3, l'ordine p = 2. Se invece $f''(\alpha) = 0$ allora l'ordine è almeno

pari a 3. Dalla relazione 2.14 segue inoltre che la costante asintotica di convergenza vale

$$\gamma = \frac{1}{2} \left| \frac{f''(\alpha)}{f'(\alpha)} \right|. \square$$

Il Teorema 2.4.4 vale nell'ipotesi in cui $f'(\alpha) \neq 0$, cioè se α è una radice semplice di f(x). Se invece la radice α ha molteplicità r > 1 l'ordine di convergenza del metodo non è più 2. In questo caso infatti si può porre

$$f(x) = q(x)(x - \alpha)^r, \qquad q(\alpha) \neq 0,$$

quindi riscrivendo la funzione iteratrice del metodo di Newton-Raphson risulta

$$g(x) = x - \frac{q(x)(x - \alpha)}{rq(x) + q'(x)(x - \alpha)},$$

da cui, dopo una serie di calcoli, risulta

$$g'(\alpha) = 1 - \frac{1}{r}. (2.15)$$

Pertanto, poichè r > 1 risulta |g'(x)| < 1 e quindi per il Teorema 2.4.2 il metodo è ancora convergente ma, applicando il Teorema 2.4.3 l'ordine di convergenza è 1.

Se si conosce la molteplicità della radice si può modificare il metodo di Newton-Raphson ottenendo uno schema numerico con ordine 2. Ponendo

$$x_{k+1} = x_k - r \frac{f(x_k)}{f'(x_k)}$$
 $k = 0, 1, 2, \dots$

si definisce un metodo con la seguente funzione iteratrice

$$g(x) = x - r \frac{f(x)}{f'(x)}$$

da cui segue, tenendo conto della (2.15), che

$$g'(\alpha) = 0.$$

Riportiamo nel seguito l'implementazione MatLab del metodo di Newton-Raphson.

```
function [alfa,k]=newton(f,f1,x0,tol,Nmax)
% La funzione calcolo un'approssimazione
% della radice con il metodo di Newton-Raphson
% Parametri di input
% f = funzione della quale calcolare la radice
% f1 = derivata prima della funzione f
% x0 = approssimazione iniziale della radice
% tol = precisione fissata
% Nmax = numero massimo di iterazioni fissate
% Parametri di output
% alfa = approssimazione della radice
% k = numero di iterazioni
if nargin==3
    tol=1e-8;
    Nmax=1000;
end
k=0;
x1=x0-feval(f,x0)/feval(f1,x0);
fx1 = feval(f,x1);
while abs(x1-x0)>tol \mid abs(fx1)>tol
    x0 = x1;
    x1 = x0-feval(f,x0)/feval(f1,x0);
    fx1 = feval(f,x1);
    k=k+1;
    if k>Nmax
        disp('Il metodo non converge');
        alfa = inf;
        break
    end
end
alfa=x1;
return
```

Esempio 2.4.1 Approssimare il numero $\alpha = \sqrt[m]{c}$ con $m \in \mathbb{R}$, $m \geq 2$, c > 0.

Il numero α cercato è lo zero della funzione

$$f(x) = x^m - c.$$

Poichè per x>0 la funzione risulta essere monotona allora è sufficiente scegliere un qualsiasi $x_0>0$ per ottenere una successione convergente alla radice m-esima di c. Il metodo di Newton-Raphson fornisce la formula

$$x_{k+1} = x_k - \frac{x_k^m - c}{mx_k^{m-1}} = \frac{1}{m} \left[(m-1)x_k + cx_k^{1-m} \right], \quad k = 0, 1, 2, \dots$$

Per m=2 lo schema diviene

$$x_{k+1} = \frac{1}{2} \left(x_k + \frac{c}{x_k} \right),$$

che è la cosiddetta formula di Erone per il calcolo della radice quadrata, nota già agli antichi Greci.

Considerando come esempio m=4 e c=3, poichè f(0)<0 e f(3)>0 allora si può applicare il metodo di bisezione ottenendo la seguente sucessione di intervalli:

Intervallo	Punto medio	Valore di f
		nel punto medio
[0, 3]	c = 1.5	f(c) = 2.0625
[0, 1.5]	c = 0.75	f(c) = -2.6836
[0.75, 1.5]	c = 1.125	f(c) = -1.3982
[1.125, 1.5]	c = 1.3125	f(c) = -0.0325
:	:	:

Dopo 10 iterazioni c=1.3154 mentre $\alpha=1.3161$, e l'errore è pari circa a $6.4433 \cdot 10^{-4}$.

Applicando il metodo di Newton-Raphson, si ottiene il processo iterativo

$$x_{k+1} = x_k - \frac{1}{3} (2x_k + 3x_k^{-3}).$$

Poichè per x > 0 la funzione è monotona crescente allora si può scegliere $x_0 = 3$ come approssimazione iniziale, ottenendo la seguente successione:

Dopo 10 iterazioni l'approssimazione è esatta con un errore dell'ordine di 10^{-16} .

2.4.3 Il metodo della direzione costante

Se applicando ripetutamente la formula di Newton-Raphson accade che la derivata prima della funzione f(x) si mantiene sensibilmente costante allora si può porre

$$M = f'(x)$$

e applicare la formula

$$x_{k+1} = x_k - \frac{f(x_k)}{M} \tag{2.16}$$

anzichè la (2.12). La (2.16) definisce un metodo che viene detto metodo di Newton semplificato oppure metodo della direzione costante in quanto geometricamente equivale all'applicazione del metodo di Newton in cui anzichè prendere la retta tangente la curva f si considera la retta avente coefficiente angolare uguale a M. La funzione iteratrice del metodo è

$$g(x) = x - \frac{f(x)}{M}$$

ed il metodo è convergente se

$$|g'(x)| = \left|1 - \frac{f'(x)}{M}\right| < 1$$

da cui si deduce che è necessario che f'(x) ed M abbiano lo stesso segno.

2.4.4 Il Metodo della Secante

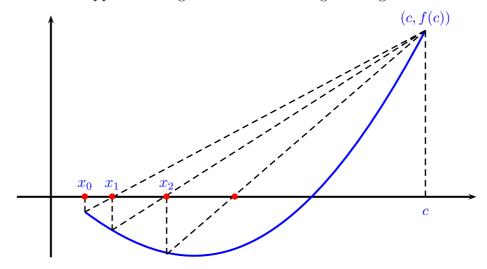
Il metodo della secante è definito dalla relazione

$$x_{k+1} = x_k - f(x_k) \frac{x_k - c}{f(x_k) - f(c)}$$

dove $c \in [a, b]$. Il significato geometrico di tale metodo è il seguente: ad un generico passo k si considera la retta congiungente i punti di coordinate $(x_k, f(x_k))$ e (c, f(c)) e si pone x_{k+1} pari all'ascissa del punto di intersezione di tale retta con l'asse x. Dalla formula si evince che la funzione iteratrice del metodo è

$$g(x) = x - f(x)\frac{x - c}{f(x) - f(c)}.$$

Il metodo è rappresentato graficamente nella seguente figura.



In base alla teoria vista nei paragrafi precedenti il metodo ha ordine di convergenza 1 se $g'(\alpha) \neq 0$. Può avere ordine di convergenza almeno 1 se $g'(\alpha) = 0$. Tale eventualità si verifica se la tangente alla curva in α ha lo stesso coefficiente angolare della retta congiungente i punti $(\alpha, 0)$ e (c, f(c)).

Poichè il metodo delle secanti ha lo svantaggio di avere, solitamente, convergenza lineare mentre il metodo di Newton-Raphson, pur avendo convergenza quadratica, ha lo svantaggio di richiedere, ad ogni passo, due valutazioni di funzioni: $f(x_k)$ ed $f'(x_k)$, quindi se il costo computazionale di $f'(x_k)$ è molto più elevato rispetto a quello di $f(x_k)$ può essere più conveniente l'uso di metodi che necessitano solo del calcolo del valore della funzione f(x).

Capitolo 3

Metodi numerici per sistemi lineari

3.1 Introduzione

Siano assegnati una matrice non singolare $A \in \mathbb{R}^{n \times n}$ ed un vettore $\mathbf{b} \in \mathbb{R}^n$. Risolvere un sistema lineare avente A come matrice dei coefficienti e \mathbf{b} come vettore dei termini noti significa trovare un vettore $\mathbf{x} \in \mathbb{R}^n$ tale che

$$A\mathbf{x} = \mathbf{b}.\tag{3.1}$$

Esplicitare la relazione (3.1) significa imporre le uguaglianze tra le componenti dei vettori a primo e secondo membro:

Le (3.2) definiscono un sistema di n equazioni algebriche lineari nelle n incognite x_1, x_2, \ldots, x_n . Il vettore \mathbf{x} viene detto vettore soluzione. Prima di affrontare il problema della risoluzione numerica di sistemi lineari richiamiamo alcuni importanti concetti di algebra lineare.

Definizione 3.1.1 Se $A \in \mathbb{R}^{n \times n}$ è una matrice di ordine 1, si definisce determinante di A il numero

$$\det A = a_{11}.$$

Se la matrice A è quadrata di ordine n allora fissata una qualsiasi riga (colonna) di A, diciamo la i-esima (j-esima) allora applicando la cosiddetta regola di Laplace il determinante di A è:

$$\det A = \sum_{j=1}^{n} a_{ij} (-1)^{i+j} \det A_{ij}$$

dove A_{ij} è la matrice che si ottiene da A cancellando la i-esima riga e la j-esima colonna.

Il determinante è pure uguale a

$$\det A = \sum_{i=1}^{n} a_{ij} (-1)^{i+j} \det A_{ij},$$

cioè il determinante è indipendente dall'indice di riga (o di colonna) fissato. Se A è la matrice di ordine 2

$$A = \left[\begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array} \right].$$

allora

$$\det A = a_{11}a_{22} - a_{21}a_{12}.$$

Il determinante ha le seguenti proprietà:

1. Se A è una matrice triangolare o diagonale allora

$$\det A = \prod_{i=1}^{n} a_{ii};$$

- 2. $\det I = 1$;
- 3. $\det A^T = \det A$;
- 4. $\det AB = \det A \det B$ (Regola di Binet);
- 5. se $\alpha \in \mathbb{R}$ allora det $\alpha A = \alpha^n \det A$;
- 6. det A=0 se una riga (o una colonna) è nulla, oppure una riga (o una colonna) è proporzionale ad un'altra riga (o colonna) oppure è combinazione lineare di due (o più) righe (o colonne) di A.
- 7. Se A è una matrice triangolare a blocchi

$$A = \left[\begin{array}{cc} B & C \\ O & D \end{array} \right]$$

con B e D matrici quadrate, allora

$$\det A = \det B \det D. \tag{3.3}$$

Una matrice A di ordine n si dice non singolare se il suo determinante è diverso da zero, in caso contrario viene detta singolare. Si definisce inversa di A la matrice A^{-1} tale che:

$$AA^{-1} = A^{-1}A = I_n$$

Per quello che riguarda il determinante della matrice inversa vale la seguente proprietà:

$$\det A^{-1} = \frac{1}{\det A}.$$

Un metodo universalmente noto per risolvere il problema (3.1) è l'applicazione della cosiddetta Regola di Cramer la quale fornisce:

$$x_i = \frac{\det A_i}{\det A} \qquad i = 1, \dots, n, \tag{3.4}$$

dove A_i è la matrice ottenuta da A sostituendo la sua i-esima colonna con il termine noto \mathbf{b} . Dalla (3.4) è evidente che per ottenere tutte le componenti del vettore soluzione è necessario il calcolo di n+1 determinanti di ordine n. Calcoliamo ora il numero di operazioni aritmetiche necessario per calcolare une determinante con la regola di Laplace. Indichiamo con f(n) il numero di operazioni aritmetiche su numeri reali necessario per calcolare un determinante di ordine n, ricordando che f(2)=3. La regola di Laplace richiede il calcolo di n determinanti di matrici di ordine n-1 (il cui costo computazionale in termini di operazioni è n f(n-1)) inoltre n prodotti ed n-1 somme algebriche, ovvero

$$f(n) = nf(n-1) + 2n - 1.$$

Per semplicità tralasciamo gli ultimi addendi ottenendo il valore approssimato

$$f(n) \simeq nf(n-1)$$

Applicando lo stesso ragionamento al numero $f(n-1) \simeq (n-1)f(n-2)$ e in modo iterativo si ottiene

$$f(n) \simeq n(n-1)(n-2)\dots 3f(2) = \frac{3}{2} n!.$$

Se n=100 si ha $100!\simeq 10^{157}$. Anche ipotizzando di poter risolvere il problema con un elaboratore in grado di eseguire miliardi di operazioni al secondo sarebbero necessari diversi anni di tempo per calcolare un singolo determinante. Questo esempio rende chiara la necessità di trovare metodi alternativi per risolvere sistemi lineari, in particolare quando le dimensioni sono particolarmente elevate.

3.2 Risoluzione di sistemi triangolari

Prima di affrontare la soluzione algoritmica di un sistema lineare vediamo qualche particolare sistema che può essere agevolmente risolto. Assumiamo che il sistema da risolvere abbia la seguente forma:

In questo caso la matrice A è detta triangolare superiore. Il determinante di una matrice di questo tipo è uguale al prodotto degli elementi diagonali pertanto la matrice è non singolare se risulta $a_{ii} \neq 0$ per ogni i. In questo caso, la soluzione è facilmente calcolabile infatti è sufficiente osservare che nell'ultima equazione compare solo un'incognita che può essere calcolata e che procedendo a ritroso da ogni equazione può essere ricavata un'incognita poichè le successive sono già state calcolate. Il metodo può essere riassunto nelle seguenti formule:

$$\begin{cases} x_n = \frac{b_n}{a_{nn}} \\ b_i - \sum_{j=i+1}^n a_{ij} x_j \\ x_i = \frac{1}{a_{ii}} & i = n-1, \dots, 1. \end{cases}$$
 (3.6)

Il metodo (3.6) prende il nome di metodo di sostituzione all'indietro, poichè il vettore \mathbf{x} viene calcolato partendo dall'ultima componente.

Anche per il seguente sistema il vettore soluzione è calcolabile in modo analogo.

In questo caso la matrice dei coefficienti è triangolare inferiore e la soluzione viene calcolata con il metodo di sostituzione in avanti:

$$\begin{cases} x_1 = \frac{b_1}{a_{11}} \\ b_i - \sum_{j=1}^{i-1} a_{ij} x_j \\ x_i = \frac{1}{a_{ii}} & i = 2, \dots, n. \end{cases}$$

Concludiamo questo paragrafo facendo alcune considerazioni sul costo computazionale dei metodi di sostituzione. Per costo computazionale di un algoritmo si intende il numero di operazioni che esso richiede per fornire la soluzione di un determinato problema. Nel caso di algoritmi numerici le operazioni che si contano sono quelle aritmetiche su dati reali. Considerano per esempio il metodo di sostituzione in avanti. Per calcolare x_1 è necessaria una sola operazione (una divisione), per calcolare x_2 le operazioni sono tre (un prodotto, una somma algebrica e una divisione), mentre il generico x_i richiede 2i-1 operazioni (i-1 prodotti, i-1 somme algebriche e una divisione), indicato con C(n) il numero totale di operazioni necessarie è:

$$C(n) = \sum_{i=1}^{n} (2i - 1) = 2\sum_{i=1}^{n} i - \sum_{i=1}^{n} 1 = 2\frac{n(n+1)}{2} - n = n^{2},$$

sfruttando la proprietà che

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}.$$

Il costo computazionale viene sempre valutato in funzione di un determinato parametro (il numero assoluto in sè non avrebbe alcun significato) che, in questo caso è la dimensione del sistema. In questo modo è possibile prevedere il tempo necessario per calcolare la soluzione del problema.

3.3 Metodo di Eliminazione di Gauss

L'idea di base del metodo di Gauss è appunto quella di operare delle opportune trasformazioni sul sistema originale $A\mathbf{x} = \mathbf{b}$, che non costino eccessivamente, in modo da ottenere un sistema equivalente¹ avente come matrice dei coefficienti una matrice triangolare superiore.

Supponiamo di dover risolvere il sistema:

Il vettore soluzione di un sistema lineare non cambia se ad un'equazione viene sommata la combinazione lineare di un'altra equazione del sistema. L'idea alla base del metodo di Gauss è quella di ottenere un sistema lineare con matrice dei coefficienti triangolare superiore effettuando opportune combinazioni lineari tra le equazioni. Poniamo

$$A^{(1)} = \begin{bmatrix} 2 & 1 & 1 & 0 \\ -6 & -4 & -5 & 1 \\ -4 & -6 & -3 & -1 \\ 2 & -3 & 7 & -3 \end{bmatrix}, \qquad \mathbf{b}^{(1)} = \begin{bmatrix} -1 \\ 1 \\ 2 \\ 0 \end{bmatrix}$$

rispettivamente la matrice dei coefficienti e il vettore dei termini noti del sistema di partenza. Calcoliamo un sistema lineare equivalente a quello iniziale ma che abbia gli elementi sottodiagonali della prima colonna uguali a zero. Azzeriamo ora l'elemento $a_{21}(1)$. Lasciamo inalterata la prima equazione.

¹Due sistemi si dicono equivalenti se ammettono lo stesso insieme di soluzioni, quindi nel nostro caso la stessa soluzione. Osserviamo che se \mathbf{x}^* è un vettore tale che $A\mathbf{x}^* = \mathbf{b}$ e B è una matrice non singolare allora $BA\mathbf{x}^* = B\mathbf{b}$; viceversa se $BA\mathbf{x}^* = B\mathbf{b}$ e B è non singolare allora $B^{-1}BA\mathbf{x}^* = B^{-1}B\mathbf{b}$ e quindi $A\mathbf{x}^* = \mathbf{b}$. Dunque se B è non singolare i sistemi $A\mathbf{x} = \mathbf{b}$ e $BA\mathbf{x} = B\mathbf{b}$ sono equivalenti.

Poniamo

$$l_{21} = -\frac{a_{21}}{a_{11}} = -\frac{-6}{2} = 3$$

e moltiplichiamo la prima equazione per l_{21} ottenendo:

$$6x_1 + 3x_2 + 3x_3 = -3.$$

La nuova seconda equazione sarà la somma tra la seconda equazione e la prima moltiplicata per l_{21} :

Prcediamo nello stesso modo per azzerare gli altri elementi della prima colonna. Poniamo

$$l_{31} = -\frac{a_{31}^{(1)}}{a_{11}^{(1)}} = -\frac{-4}{2} = 2$$

e moltiplichiamo la prima equazione per l_{31} ottenendo:

$$4x_1 + 2x_2 + 2x_3 = -2.$$

La nuova terza equazione sarà la somma tra la terza equazione e la prima moltiplicata per l_{31} :

Poniamo ora

$$l_{41} = -\frac{a_{41}^{(1)}}{a_{11}^{(1)}} = -\frac{2}{2} = -1$$

e moltiplichiamo la prima equazione per l_{41} ottenendo:

$$-2x_1 - x_2 - x_3 = 1.$$

La nuova quarta equazione sarà la somma tra la quarta equazione e la prima moltiplicata per l_{41} :

I numeri $l_{21}, l_{3,1}, \ldots$ sono detti moltiplicatori. Al secondo passo il sistema lineare è diventato:

La matrice dei coefficienti e il vettore dei termini noti sono diventati:

$$A^{(2)} = \begin{bmatrix} 2 & 1 & 1 & 0 \\ 0 & -1 & -2 & 1 \\ 0 & -4 & -1 & -1 \\ 0 & -4 & 6 & -3 \end{bmatrix}, \qquad \mathbf{b}^{(2)} = \begin{bmatrix} -1 \\ -2 \\ 0 \\ 1 \end{bmatrix}.$$

Cerchiamo ora di azzerare gli elementi sottodiagonali della seconda colonna, a partire da a_{32} , usando una tecnica simile. Innanzitutto osserviamo che non conviene prendere in considerazione una combinazione lineare che coinvolga la prima equazione perchè avendo questa un elemento in prima posizione diverso da zero quando sommata alla terza equazione cancellerà l'elemento uguale a zero in prima posizione. Lasciamo inalterate le prime due equazioni del sistema e prendiamo come equazione di riferimento la seconda. Poichè $a_{22}^{(2)} \neq 0$ poniamo

$$l_{32} = -\frac{a_{32}^{(2)}}{a_{22}^{(2)}} = -\frac{-4}{-1} = -4$$

e moltiplichiamo la seconda equazione per l_{32} ottenendo:

$$4x_2 + 8x_3 - 4x_4 = 8$$
.

La nuova terza equazione sarà la somma tra la terza equazione e la seconda appena modificata:

Poniamo

$$l_{42} = -\frac{a_{42}^{(2)}}{a_{22}^{(2)}} = -\frac{-4}{-1} = -4$$

e moltiplichiamo la seconda equazione per l_{42} ottenendo:

$$4x_2 + 8x_3 - 4x_4 = 8.$$

La nuova quarta equazione sarà la somma tra la quarta equazione e la seconda appena modificata:

Al terzo passo il sistema lineare è diventato:

La matrice dei coefficienti e il vettore dei termini noti sono quindi

$$A^{(3)} = \begin{bmatrix} 2 & 1 & 1 & 0 \\ 0 & -1 & -2 & 1 \\ 0 & 0 & 7 & -5 \\ 0 & 0 & 14 & -7 \end{bmatrix}, \qquad \mathbf{b}^{(2)} = \begin{bmatrix} -1 \\ -2 \\ 8 \\ 9 \end{bmatrix}.$$

Resta da azzerare l'unico elemento sottodiagonali della terza colonna. Lasciamo inalterate le prime tre equazioni del sistema. Poniamo

$$l_{43} = -\frac{a_{43}^{(3)}}{a_{33}^{(3)}} = -\frac{14}{7} = -2$$

e moltiplichiamo la terza equazione per l_{43} ottenendo:

$$-14x_3 + 10x_4 = -16.$$

La nuova quarta equazione sarà la somma tra la quarta equazione e la terza appena modificata:

Abbiamo ottenuto un sistema triangolare superiore:

La matrice dei coefficienti e il vettore dei termini noti sono diventati:

$$A^{(4)} = \begin{bmatrix} 2 & 1 & 1 & 0 \\ 0 & -1 & -2 & 1 \\ 0 & 0 & 7 & -5 \\ 0 & 0 & 0 & 3 \end{bmatrix}, \qquad \mathbf{b}^{(4)} = \begin{bmatrix} -1 \\ 4 \\ 8 \\ -7 \end{bmatrix}.$$

Vediamo come ciò sia possibile. Riconsideriamo il sistema di equazioni nella sua forma scalare (3.2):

$$\sum_{i=1}^{n} a_{ij} x_j = b_i, \qquad i = 1, \dots, n.$$
(3.8)

Per motivi che risulteranno chiari tra poco poniamo $a_{ij}^{(1)}=a_{ij}$ e $b_i^{(1)}=b_i$. Isoliamo in ogni equazione la componente x_1 . Abbiamo:

$$a_{11}^{(1)}x_1 + \sum_{j=2}^n a_{1j}^{(1)}x_j = b_1^{(1)}$$
(3.9)

$$a_{i1}^{(1)}x_1 + \sum_{j=2}^{n} a_{ij}^{(1)}x_j = b_i^{(1)}, \qquad i = 2, \dots, n.$$
 (3.10)

Dividendo l'equazione (3.9) per $a_{11}^{(1)}$ e moltiplicandola rispettivamente per $-a_{21}^{(1)},-a_{31}^{(1)},\ldots,-a_{n1}^{(1)}$ si ottengono n-1 nuove equazioni:

$$a_{i1}^{(1)}x_1 + \sum_{i=2}^{n} \frac{a_{i1}^{(1)}}{a_{11}^{(1)}} a_{1j}^{(1)} x_j = \frac{a_{i1}^{(1)}}{a_{11}^{(1)}} b_i^{(1)}, \qquad i = 2, \dots, n.$$
 (3.11)

Sommando da (3.10) le equazioni (3.11) si ottiene

$$\sum_{i=2}^{n} \left(a_{ij}^{(1)} - \frac{a_{i1}^{(1)}}{a_{11}^{(1)}} a_{1j}^{(1)} \right) x_j = b_i^{(1)} - \frac{a_{i1}^{(1)}}{a_{11}^{(1)}} b_1^{(1)}, \qquad i = 2, \dots, n.$$
 (3.12)

L'equazione (3.9) insieme alle (3.12) formano un nuovo sistema di equazioni, equivalente a quello originario, che possiamo scrivere così:

$$\begin{cases}
 a_{11}^{(1)}x_1 + \sum_{j=2}^n a_{1j}^{(1)}x_j = b_1^{(1)} \\
 \sum_{j=2}^n a_{ij}^{(2)}x_j = b_i^{(2)} & i = 2, \dots, n
\end{cases}$$
(3.13)

dove

$$\begin{cases}
 a_{ij}^{(2)} = a_{ij}^{(1)} - \frac{a_{i1}^{(1)}}{a_{11}^{(1)}} a_{1j}^{(1)} & i, j = 2, \dots, n \\
 b_{i}^{(2)} = b_{i}^{(1)} - \frac{a_{i1}^{(1)}}{a_{11}^{(1)}} b_{1}^{(1)} & i = 2, \dots, n.
\end{cases}$$
(3.14)

Osserviamo che la matrice dei coefficienti del sistema (3.13) è la seguente

$$A^{(2)} = \begin{bmatrix} a_{11}^{(1)} & a_{12}^{(1)} & \dots & a_{1n}^{(1)} \\ 0 & a_{22}^{(2)} & \dots & a_{2n}^{(2)} \\ \vdots & \vdots & & \vdots \\ 0 & a_{n2}^{(2)} & \dots & a_{nn}^{(2)} \end{bmatrix}.$$

Ora a partire dal sistema di equazioni

$$\sum_{j=2}^{n} a_{ij}^{(2)} x_j = b_i^{(2)} \qquad i = 2, \dots, n,$$

ripetiamo i passi fatti precedentemente:

$$a_{22}^{(2)}x_2 + \sum_{j=3}^{n} a_{2j}^{(2)}x_j = b_2^{(2)}$$
(3.15)

$$a_{i2}^{(2)}x_2 + \sum_{j=3}^n a_{ij}^{(2)}x_j = b_i^{(2)}, \qquad i = 3, \dots, n.$$
 (3.16)

Moltiplicando l'equazione (3.15) per $-\frac{a_{i2}^{(2)}}{a_{22}^{(2)}}$, per $i=3,\ldots,n,$ si ottiene

$$a_{i2}^{(2)}x_2 + \sum_{j=3}^n \left(-\frac{a_{i2}^{(2)}}{a_{22}^{(2)}} a_{2j}^{(2)} \right) x_j = \frac{a_{i2}^{(2)}}{a_{22}^{(2)}} b_2^{(2)}, \qquad i = 3, \dots, n.$$
 (3.17)

Sommando a questo punto le equazioni (3.17) alle (3.16) si ottiene:

$$\sum_{j=3}^{n} \left(a_{ij}^{(2)} - \frac{a_{i2}^{(2)}}{a_{22}^{(2)}} a_{2j}^{(2)} \right) x_j = b_i^{(2)} - \frac{a_{i2}^{(2)}}{a_{22}^{(2)}} b_2^{(2)}, \qquad i = 3, \dots, n$$
 (3.18)

ovvero scritta in forma più compatta:

$$\sum_{i=3}^{n} a_{ij}^{(3)} x_j = b_i^{(3)} \qquad i = 3, \dots, n$$

dove

$$\begin{cases} a_{ij}^{(3)} = a_{ij}^{(2)} - \frac{a_{i2}^{(2)}}{a_{22}^{(2)}} a_{2j}^{(2)} & i, j = 3, \dots, n \\ b_i^{(3)} = b_i^{(2)} - \frac{a_{i2}^{(2)}}{a_{22}^{(2)}} b_2^{(2)} & i = 3, \dots, n. \end{cases}$$

Abbiamo il nuovo sistema equivalente:

$$\begin{cases} \sum_{j=1}^{n} a_{1j}^{(1)} x_j = b_1^{(1)} \\ \sum_{j=2}^{n} a_{2j}^{(2)} x_j = b_2^{(2)} \\ \\ \sum_{j=3}^{n} a_{ij}^{(3)} x_j = b_i^{(3)} & i = 3, \dots, n. \end{cases}$$

Osserviamo che in questo caso la matrice dei coefficienti è

$$A^{(3)} = \begin{bmatrix} a_{11}^{(1)} & a_{12}^{(1)} & a_{13}^{(1)} & \dots & a_{1n}^{(1)} \\ 0 & a_{22}^{(2)} & a_{23}^{(2)} & \dots & a_{2n}^{(2)} \\ 0 & 0 & a_{33}^{(3)} & \dots & a_{2n}^{(3)} \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & a_{n3}^{(3)} & \dots & a_{nn}^{(3)} \end{bmatrix}.$$

È evidente ora che dopo n-1 passi di questo tipo arriveremo ad un sistema equivalente a quello di partenza avente la forma:

$$\begin{bmatrix} a_{11}^{(1)} & a_{12}^{(1)} & \dots & & & & a_{1n}^{(1)} \\ 0 & a_{22}^{(2)} & \dots & & & & a_{2n}^{(2)} \\ 0 & 0 & \ddots & & & \vdots \\ \vdots & \vdots & \ddots & a_{n-1 \ n-1}^{(n-1)} & a_{n-1 \ n}^{(n-1)} \\ 0 & 0 & \dots & 0 & a_{nn}^{(n)} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_{n-1} \\ x_n \end{bmatrix} = \begin{bmatrix} b_1^{(1)} \\ b_2^{(2)} \\ \vdots \\ b_{n-1}^{(n-1)} \\ b_n^{(n)} \end{bmatrix}$$

la cui soluzione, come abbiamo visto, si ottiene facilmente, e dove le formule di trasformazione al passo k sono:

$$a_{ij}^{(k+1)} = a_{ij}^{(k)} - \frac{a_{ik}^{(k)}}{a_{kk}^{(k)}} a_{kj}^{(k)} \qquad i, j = k+1, \dots, n$$

$$b_i^{(k+1)} = b_i^{(k)} - \frac{a_{ik}^{(k)}}{a_{kk}^{(k)}} b_k^{(k)} \qquad i = k+1, \dots, n.$$
(3.19)

е

$$b_i^{(k+1)} = b_i^{(k)} - \frac{a_{ik}^{(k)}}{a_{kk}^{(k)}} b_k^{(k)} \qquad i = k+1, \dots, n.$$
(3.20)

Soffermiamoci ora un momento sul primo passo del procedimento. Osserviamo che per ottenere il 1º sistema equivalente abbiamo operato le seguenti fasi:

- 1. moltiplicazione della prima riga della matrice dei coefficienti (e del corrispondente elemento del termine noto) per un opportuno scalare;
- 2. sottrazione dalla riga i-esima di A della prima riga modificata dopo il passo 1.

Il valore di k varia da 1 (matrice dei coefficienti e vettori dei termini noti iniziali) fino a n-1, infatti la matrice $A^{(n)}$ avrà gli elementi sottodiagonali delle prime n-1 colonne uguali a zero.

Si può osservare che il metodo di eliminazione di Gauss ha successo se tutti gli elementi $a_{kk}^{(k)}$ sono diversi da zero, che sono detti elementi pivotali. Un proprietà importante delle matrici $A^{(k)}$ è il fatto che le operazioni effet-

Un proprietà importante delle matrici $A^{(k)}$ è il fatto che le operazioni effettuate non alterano il determinante della matrice, quindi

$$\det A^{(k)} = \det A,$$

per ogni k. Poichè la matrice $A^{(n)}$ è triangolare superiore allora il suo determinante può essere calcolato esplicitamente

$$\det A^{(k)} = \prod_{k=1}^{n} a_{kk}^{(k)}.$$

Quello appena descritto è un modo, alternativo alla regola di Laplace per calcolare il determinante della matrice A.

Esempio 3.3.1 Calcolare il determinante della matrice

$$A = \left[\begin{array}{rrrr} 3 & 3 & 5 & 0 \\ 3 & 2 & 6 & -1 \\ 0 & 2 & 0 & 4 \\ 1 & 3 & 0 & 4 \end{array} \right]$$

utlizzando il metodo di eliminazione di Gauss.

Posto $A^{(1)} = A$, calcoliamo i tre moltiplicatori

$$l_{2,1} = -1,$$
 $l_{3,1} = 0,$ $l_{4,1} = -\frac{1}{3}.$

Calcoliamo la seconda riga:

La terza riga non cambia perchè il moltiplicatore è nullo, mentre la quarta riga è

Abbiamo ottenuto la seguente matrice al passo 2:

$$A^{(2)} = \begin{bmatrix} 3 & 3 & 5 & 0 \\ 0 & -1 & 1 & -1 \\ 0 & 2 & 0 & 4 \\ 0 & 2 & -5/3 & 4 \end{bmatrix}.$$

Calcoliamo i due moltiplicatori

$$l_{3,2} = 2, l_{4,2} = 2.$$

Calcoliamo la terza riga:

La quarta riga è

Abbiamo ottenuto la seguente matrice al passo 3:

$$A^{(3)} = \begin{bmatrix} 3 & 3 & 5 & 0 \\ 0 & -1 & 1 & -1 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & 1/3 & 2 \end{bmatrix}.$$

Calcoliamo l'unico moltiplicatore del terzo passo:

$$l_{4,3} = -\frac{1}{6}.$$

La quarta riga è

La matrice triagolarizzata è

$$A^{(4)} = \begin{bmatrix} 3 & 3 & 5 & 0 \\ 0 & -1 & 1 & -1 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & 5/3 \end{bmatrix}.$$

Il determinante della matrice è uguale al prodotto degli elementi diagonali della matrice triangolare, ovvero

$$\det A = -10.$$

Esempio 3.3.2 Calcolare l'inversa della matrice

$$A = \left[\begin{array}{rrrr} 2 & 1 & 0 & 1 \\ 1 & 1 & 2 & 0 \\ -1 & 0 & 3 & 1 \\ 1 & 1 & 2 & 2 \end{array} \right]$$

utlizzando il metodo di eliminazione di Gauss.

L'inversa di A è la matrice X tale che

$$AX = I$$

ovvero, detta \mathbf{x}_i la i—esima colonna di X, questo è soluzione del sistema lineare

$$A\mathbf{x}_i = \mathbf{e}_i \tag{3.21}$$

dove \mathbf{e}_i è l'i—esimo versore della base canonica di \mathbb{R}^n . Posto i=1 risolvendo il sistema

$$A\mathbf{x}_1 = \mathbf{e}_1, \qquad \begin{bmatrix} 2 & 1 & 0 & 1 \\ 1 & 1 & 2 & 0 \\ -1 & 0 & 3 & 1 \\ 1 & 1 & 2 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

si ottengono gli elementi della prima colonna di A^{-1} . Posto $A^{(1)}=A$ gli elementi della matrice al passo 2 sono calcolati applicando le formule

$$a_{ij}^{(2)} = a_{ij}^{(1)} - \frac{a_{i1}^{(1)}}{a_{11}^{(1)}} a_{1j}^{(1)}, \qquad i, j = 2, 3, 4.$$

Tralasciando il dettaglio delle operazioni risulta

$$A^{(2)} = \begin{bmatrix} 2 & 1 & 0 & 1 \\ 0 & 1/2 & 2 & -1/2 \\ 0 & 1/2 & 3 & 3/2 \\ 0 & 1/2 & 2 & 3/2 \end{bmatrix}, \qquad \mathbf{e}_{1}^{(2)} = \begin{bmatrix} 1 \\ -1/2 \\ 1/2 \\ -1/2 \end{bmatrix}$$

Applicando le formula

$$a_{ij}^{(3)} = a_{ij}^{(2)} - \frac{a_{i2}^{(2)}}{a_{22}^{(2)}} a_{2j}^{(2)}, \qquad i, j = 3, 4.$$

si ottiene il sistema al terzo passo

$$A^{(3)} = \begin{bmatrix} 2 & 1 & 0 & 1 \\ 0 & 1/2 & 2 & -1/2 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 2 \end{bmatrix}, \qquad \mathbf{e}_{1}^{(3)} = \begin{bmatrix} 1 \\ -1/2 \\ 1 \\ 0 \end{bmatrix}.$$

In questo caso non è necessario applicare l'ultimo passo del metodo in quanto la matrice è già triangolare superiore e pertanto si può risolvere il sistema triangolare superiore ottenendo:

$$x_4 = 0$$
, $x_3 = 1$, $x_2 = -5$, $x_1 = 3$.

Cambiando i termini noti del sistema (3.21), ponendo i = 2, 3, 4 si ottengono le altre tre colonne della matrice inversa.

3.3.1 Costo Computazionale del Metodo di Eliminazione di Gauss

Cerchiamo ora di determinare il costo computazionale (cioè il numero di operazioni aritmetiche) richiesto dal metodo di eliminazione di Gauss per risolvere un sistema lineare di ordine n. Dalle relazioni

$$b_i^{(k+1)} = b_i^{(k)} - \frac{a_{ik}^{(k)}}{a_{kk}^{(k)}} b_k^{(k)}, \qquad i = k+1, \dots, n,$$

$$a_{ij}^{(k+1)} = a_{ij}^{(k)} - \frac{a_{ik}^{(k)}}{a_{kk}^{(k)}} a_{kj}^{(k)}, \qquad i, j = k+1, \dots, n$$

è evidente che servono 3 operazioni aritmetiche per calcolare $b_i^{(k+1)}$ (noto $b_i^{(k)}$) mentre sono necessarie che solo 2 operazioni per calcolare $a_{ij}^{(k+1)}$ (noto $a_{ij}^{(k)}$), infatti il moltiplicatore viene calcolato solo una volta. Il numero di elementi del vettore dei termini noti che vengono modificati è pari ad n-k mentre gli elementi della matrice cambiati sono $(n-k)^2$ quindi complessivamente il numero di operazioni per calcolare gli elementi al passo k+1 è:

$$2(n-k)^2 + 3(n-k)$$

Pertanto per trasformare A in $A^{(n)}$ e **b** in $\mathbf{b}^{(n)}$ è necessario un numero di operazioni pari ala somma, rispetto a k, di tale valore

$$f(n) = 2\sum_{k=1}^{n-1} (n-k)^2 + 3\sum_{k=1}^{n-1} (n-k).$$

Sapendo che

$$\sum_{n=1}^{n} n^2 = \frac{n(n+1)(2n+1)}{6}$$

ed effettuando un opportuno cambio di indice nelle sommatorie risulta

$$f(n) = 2\left[\frac{n(n-1)(2n-1)}{6}\right] + 3\frac{n(n-1)}{2} = \frac{2}{3}n^3 + \frac{n^2}{2} - \frac{7}{6}n.$$

A questo valore bisogna aggiungere le n^2 operazioni aritmetiche necessarie per risolvere il sistema triangolare superiore ottenendo

$$\frac{2}{3}n^3 + \frac{3}{2}n^2 - \frac{7}{6}n$$

che è un valore molto inferiore rispetto alle n! operazioni richieste dalla regola di Cramer, applicata insieme alla regola di Laplace.

3.3.2 Strategie di Pivoting per il metodo di Gauss

Nell'eseguire il metodo di Gauss si è fatta l'implicita ipotesi (vedi formule (3.19) e (3.20)) che gli elementi pivotali $a_{kk}^{(k)}$ siano non nulli per ogni k. Tale situazione si verifica quando i minori principali di testa di ordine di A sono diversi da zero. Infatti vale il seguente risultato.

Teorema 3.3.1 Se $A \in \mathbb{R}^{n \times n}$, indicata con A_k la matrice principale di testa di ordine k, risulta

$$a_{kk}^{(k)} = \frac{\det A_k}{\det A_{k-1}}, \qquad k = 1, \dots, n$$

avendo posto per convenzione $\det A_0 = 1$.

In pratica questa non è un'ipotesi limitante in quanto la non singolarità di A permette, con un opportuno scambio di righe in $A^{(k)}$, di ricondursi a questo caso. Infatti scambiare due righe in $A^{(k)}$ significa sostanzialmente scambiare due equazioni nel sistema $A^{(k)}\mathbf{x} = \mathbf{b}^{(k)}$ e ciò non altera la natura del sistema stesso.

Consideriamo la matrice $A^{(k)}$ e supponiamo $a_{kk}^{(k)}=0$. In questo caso possiamo scegliere un elemento sottodiagonale appartenente alla k-esima colonna diverso da zero, supponiamo $a_{ik}^{(k)}$, scambiare le equazioni di indice i e k e continuare il procedimento perchè in questo modo l'elemento pivotale è diverso da zero. In ipotesi di non singolarità della matrice A possiamo dimostrare tale elemento diverso da zero esiste sicuramente. Infatti supponendo che, oltra all'elemento pivotale, siano nulli tutti gli $a_{ik}^{(k)}$ per $i=k+1,\ldots,n$, allora $A^{(k)}$ ha la seguente struttura:

$$A^{(k)} = \begin{bmatrix} a_{11}^{(1)} & \dots & a_{1,k-1}^{(1)} & a_{1k}^{(1)} & a_{1,k+1}^{(1)} & \dots & a_{1n}^{(1)} \\ & \ddots & \vdots & \vdots & \vdots & & \vdots \\ & & a_{k-1,k-1}^{(k-1)} & a_{k-1,k}^{(k-1)} & a_{k-1,k+1}^{(k-1)} & \dots & a_{k-1,n}^{(k-1)} \\ & & & 0 & a_{k,k+1}^{(k)} & & a_{kn}^{(k)} \\ & & 0 & \vdots & \vdots & & \vdots \\ & & 0 & a_{n,k+1}^{(k)} & \dots & a_{nn}^{(k)}. \end{bmatrix}$$

Se partizioniamo $A^{(k)}$ nel seguente modo

$$A^{(k)} = \begin{bmatrix} A_{11}^{(k)} & A_{12}^{(k)} \\ 0 & A_{22}^{(k)} \end{bmatrix}$$

con $A_{11}^{(k)} \in \mathbb{R}^{(k-1)\times (k-1)}$ allora il determinante di $A^{(k)}$ è

$$\det A^{(k)} = \det A_{11}^{(k)} \det A_{22}^{(k)} = 0$$

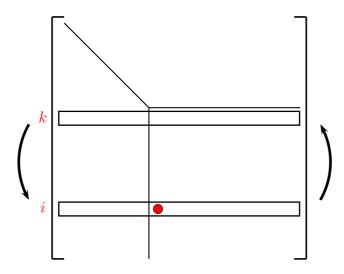


Figura 3.1: Strategia di pivoting parziale.

perchè la matrice $A_{22}^{(k)}$ ha una colonna nulla. Poichè tutte la matrici $A^{(k)}$ hanno lo stesso determinante di A, dovrebbe essere det A=0 e questo contrasta con l'ipotesi fatta. Possiamo concludere che se $a_{kk}^{(k)}=0$ e det $A\neq 0$ deve necessariamente esistere un elemento $a_{ik}^{(k)}\neq 0$, con $i\in\{k+1,k+2,\ldots,n\}$. Per evitare che un elemento pivotale possa essere uguale a zero si applica una delle cosiddette strategie di pivoting. La strategia di Pivoting parziale prevede che prima di fare ciò si ricerchi l'elemento di massimo modulo tra gli elementi $a_{kk}^{(k)}, a_{k+1,k}^{(k)}, \ldots, a_{nk}^{(k)}$ e si scambi la riga in cui si trova questo elemento con la k-esima qualora esso sia diverso da $a_{kk}^{(k)}$. In altri termini il pivoting parziale richiede le seguenti operazioni:

1. determinare l'elemento $\boldsymbol{a}_{rk}^{(k)}$ tale che

$$|a_{rk}^{(k)}| = \max_{k \le i \le n} |a_{ik}^{(k)}|;$$

2. effettuare lo scambio tra la r-esima e la k-esima riga e tra la s-esima e la k-esima colonna.

in alternativa si può adottare la strategia di pivoting totale che è la seguente:

1. determinare gli indici r, s tali che

$$|a_{rs}^{(k)}| = \max_{k \le i, j \le n} |a_{ij}^{(k)}|;$$

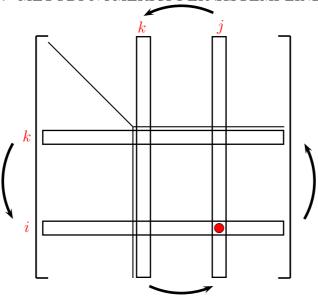


Figura 3.2: strategia di pivoting totale.

2. effettuare lo scambio tra la r-esima e la k-esima riga e tra la s-esima e la k-esima colonna.

La strategia di pivoting totale è senz'altro migliore perchè garantisce maggiormente che un elemento pivotale non sia un numero piccolo (in questa eventualità potrebbe accadere che un moltiplicatore sia un numero molto grande) ma richiede che tutti gli eventuali scambi tra le colonne della matrice siano memorizzati. Infatti scambiare due colonne significa scambiare due incognite del vettore soluzione pertanto dopo la risoluzione del sistema triangolare per ottenere il vettore soluzione del sistema di partenza è opportuno permutare le componenti che sono state scambiate.

Esempio 3.3.3 Risolvere il sistema lineare $A\mathbf{x} = \mathbf{b}$ dove

$$A = \begin{bmatrix} 1 & 2 & -1 & 0 \\ 2 & -1 & -1 & 1 \\ 3 & 0 & -1 & 1 \\ 1 & -3 & 1 & 1 \end{bmatrix}, \qquad \mathbf{b} = \begin{bmatrix} 2 \\ 1 \\ 4 \\ 2 \end{bmatrix}$$

utlizzando il metodo di eliminazione di Gauss con strategia di pivoting parziale.

Posto $A^{(1)} = A$, osserviamo che l'elemento pivotale della prima colonna si trova sulla terza riga allora scambiamo per equazioni 1 e 3:

$$A^{(1)} = \begin{bmatrix} 3 & 0 & -1 & 1 \\ 2 & -1 & -1 & 1 \\ 1 & 2 & -1 & 0 \\ 1 & -3 & 1 & 1 \end{bmatrix}, \qquad \mathbf{b}^{(1)} = \begin{bmatrix} 4 \\ 1 \\ 2 \\ 2 \end{bmatrix}$$

calcoliamo i tre moltiplicatori

$$l_{2,1} = -\frac{2}{3}, \qquad l_{3,1} = -\frac{1}{3}, \qquad l_{4,1} = -\frac{1}{3}.$$

Calcoliamo la seconda riga:

La terza riga è la seguente:

mentre la quarta riga è

Abbiamo ottenuto la matrice ed il vettore al passo 2:

$$A^{(2)} = \begin{bmatrix} 3 & 0 & -1 & 1\\ 0 & -1 & -1/3 & 1/3\\ 0 & 2 & -2/3 & -1/3\\ 0 & -3 & 4/3 & 2/3 \end{bmatrix}, \qquad \mathbf{b}^{(2)} = \begin{bmatrix} 4\\ -5/3\\ 2/3\\ 2/3 \end{bmatrix}.$$

L'elemento pivotale della seconda colonna si trova sulla quarta riga quindi scambiamo le equazioni 2 e 4:

$$A^{(2)} = \begin{bmatrix} 3 & 0 & -1 & 1 \\ 0 & -3 & 4/3 & 2/3 \\ 0 & 2 & -2/3 & -1/3 \\ 0 & -1 & -1/3 & 1/3 \end{bmatrix}, \qquad \mathbf{b}^{(2)} = \begin{bmatrix} 4 \\ 2/3 \\ 2/3 \\ -5/3 \end{bmatrix}.$$

Calcoliamo i due moltiplicatori

$$l_{3,2} = \frac{2}{3}, \qquad l_{4,2} = -\frac{1}{3}.$$

La terza riga è la seguente:

mentre la quarta riga è

Abbiamo ottenuto la matrice ed il vettore al passo 3:

$$A^{(3)} = \begin{bmatrix} 3 & 0 & -1 & 1\\ 0 & -3 & 4/3 & 2/3\\ 0 & 0 & 2/9 & 1/9\\ 0 & 0 & -7/9 & 1/9 \end{bmatrix}, \qquad \mathbf{b}^{(3)} = \begin{bmatrix} 4\\ 2/3\\ 10/9\\ -17/9 \end{bmatrix}.$$

L'elemento pivotale della terza colonna si trova sulla quarta riga quindi scambiamo le equazioni 3 e 4:

$$A^{(3)} = \begin{bmatrix} 3 & 0 & -1 & 1\\ 0 & -3 & 4/3 & 2/3\\ 0 & 0 & -7/9 & 1/9\\ 0 & 0 & 2/9 & 1/9 \end{bmatrix}, \qquad \mathbf{b}^{(3)} = \begin{bmatrix} 4\\ 2/3\\ -17/9\\ 10/9 \end{bmatrix}.$$

Calcoliamo l'unico moltiplicatore del terzo passo:

$$l_{4,3} = \frac{2}{7}.$$

La quarta riga è

Il sistema triagolare superiore equivalente a quello iniziale ha come matrice dei coefficienti e come termine noto:

$$A^{(3)} = \begin{bmatrix} 3 & 0 & -1 & 1 \\ 0 & -3 & 4/3 & 2/3 \\ 0 & 0 & -7/9 & 1/9 \\ 0 & 0 & 0 & 1/7 \end{bmatrix}, \qquad \mathbf{b}^{(3)} = \begin{bmatrix} 4 \\ 2/3 \\ -17/9 \\ 4/7 \end{bmatrix}.$$

Risolvendo tale sistema triangolare superiore si ricava il vettore:

$$x_4 = 4,$$
 $x_3 = 3,$ $x_2 = 2,$ $x_1 = 1.$

Nelle pagine seguenti sono riportati i codici MatLab che implementano il metodo di Gauss con entrambe le strategie di pivoting descritte.

```
function x=Gauss(A,b)
%
% Metodo di eliminazione di Gauss
% Parametri di input:
% A = Matrice dei coefficienti del sistema
% b = Vettore dei termini noti del sistema
%
% Parametri di input:
% x = Vettore soluzione del sistema lineare
%
n = length(b);
x = zeros(n,1);
for k=1:n-1
  if abs(A(k,k)) < eps
    error('Elemento pivotale nullo ')
  end
  for i=k+1:n
    A(i,k) = A(i,k)/A(k,k);
    b(i) = b(i)-A(i,k)*b(k);
    for j=k+1:n
      A(i,j) = A(i,j)-A(i,k)*A(k,j);
 end
```

```
x(n) = b(n)/A(n,n);
for i=n-1:-1:1
  x(i) = (b(i)-A(i,i+1:n)*x(i+1:n))/A(i,i);
end
return
function x=Gauss_pp(A,b)
% Metodo di Gauss con pivot parziale
% Parametri di input:
% A = Matrice dei coefficienti del sistema
% b = Vettore dei termini noti del sistema
% Parametri di input:
% x = Vettore soluzione del sistema lineare
n = length(b);
x = zeros(n,1);
for k=1:n-1
  [a,i] = \max(abs(A(k:n,k)));
  i = i+k-1;
  if i~=k
    A([i k],:) = A([k i],:);
    b([i k]) = b([k i]);
  end
  for i=k+1:n
    A(i,k) = A(i,k)/A(k,k);
    b(i) = b(i)-A(i,k)*b(k);
    for j=k+1:n
      A(i,j) = A(i,j)-A(i,k)*A(k,j);
    end
 end
end
x(n) = b(n)/A(n,n);
for i=n-1:-1:1
  x(i) = (b(i)-A(i,i+1:n)*x(i+1:n))/A(i,i);
```

```
end
return
function x=Gauss_pt(A,b)
% Metodo di Gauss con pivot totale
%
% Parametri di input:
% A = Matrice dei coefficienti del sistema
% b = Vettore dei termini noti del sistema
% Parametri di input:
% x = Vettore soluzione del sistema lineare
%
n = length(b);
x = zeros(n,1);
x1 = x;
indice = [1:n];
for k=1:n-1
  [a,riga] = max(abs(A(k:n,k:n)));
  [mass,col] = max(a);
  j = col+k-1;
  i = riga(col)+k-1;
  if i~=k
  A([i k],:) = A([k i],:);
  b([i k]) = b([k i]);
  end
  if j~=k
  A(:,[j k]) = A(:,[k j]);
    indice([j k]) = indice([k j]);
  end
  for i=k+1:n
    A(i,k) = A(i,k)/A(k,k);
    b(i) = b(i)-A(i,k)*b(k);
    for j=k+1:n
      A(i,j) = A(i,j)-A(i,k)*A(k,j);
    end
  end
```

```
end
%
% Risoluzione del sistema triangolare superiore
%
x1(n) = b(n)/A(n,n);
for i=n-1:-1:1
    x1(i) = (b(i)-A(i,i+1:n)*x1(i+1:n))/A(i,i);
end
%
% Ripermutazione del vettore
%
for i=1:n
    x(indice(i))=x1(i);
end
return
```

3.3.3 La Fattorizzazione LU

Supponiamo di dover risolvere un problema che richieda, ad un determinato passo, la risoluzione del sistema lineare $A\mathbf{x} = \mathbf{b}$ e di utilizzare il metodo di Gauss. La matrice viene resa triangolare superiore e viene risolto il sistema triangolare

$$A^{(n)}\mathbf{x} = \mathbf{b}^{(n)}. (3.22)$$

Ipotizziamo che, nell'ambito dello stesso problema, dopo un certo tempo sia necessario risolvere il sistema

$$A\mathbf{x} = \mathbf{c}$$

i cui la matrice dei coefficienti è la stessa mentre è cambiato il termine noto. Appare chiaro che non è possibile sfruttare i calcoli gia fatti in quanto il calcolo del vettore dei termini noti al passo n dipende dalle matrici ai passi precedenti all'ultimo, quindi la conoscenza della matrice $A^{(n)}$ è del tutto inutile. È necessario pertanto applicare nuovamente il metodo di Gauss e risolvere il sistema triangolare

$$A^{(n)}\mathbf{x} = \mathbf{c}^{(n)}. (3.23)$$

L'algoritmo che sarà descritto in questo paragrafo consentirà di evitare l'eventualità di dover rifare tutti i calcoli (o una parte di questi). La Fattorizzazione LU di una matrice stabilisce, sotto determinate ipotesi, l'esistenza

di una matrice L triangolare inferiore con elementi diagonali uguali a 1 e di una matrice triangolare superiore U tali che A=LU.

Vediamo ora di determinare le formule esplicite per gli elementi delle due matrici. Fissata la matrice A, quadrata di ordine n, imponiamo che risulti

$$A = LU$$
.

Una volta note tali matrici il sistema di partenza $A\mathbf{x} = \mathbf{b}$ viene scritto come

$$LU\mathbf{x} = \mathbf{b}$$

e, posto $U\mathbf{x} = \mathbf{y}$, il vettore \mathbf{x} viene trovato prima risolvendo il sistema triangolare inferiore

$$L\mathbf{y} = \mathbf{b}$$

e poi quello triangolare superiore

$$U\mathbf{x} = \mathbf{y}$$
.

Imponiamo che la matrice A ammetta fattorizzazione LU:

$$\begin{bmatrix} a_{11} & \dots & a_{1j} & \dots & a_{1n} \\ \vdots & & \vdots & & \vdots \\ a_{i1} & \dots & a_{ij} & \dots & a_{in} \\ \vdots & & \vdots & & \vdots \\ a_{n1} & \dots & a_{nj} & \dots & a_{nn} \end{bmatrix} =$$

$$= \begin{bmatrix} 1 & 0 & \cdots & \cdots & 0 \\ l_{21} & 1 & \ddots & & \vdots \\ \vdots & \ddots & \ddots & 0 & \vdots \\ l_{i1} & \cdots & l_{i,i-1} & 1 & \ddots & \vdots \\ \vdots & & \vdots & & \ddots & 0 \\ l_{n1} & \cdots & l_{n,i-1} & l_{n,i} & \cdots & 1 \end{bmatrix} \begin{bmatrix} u_{11} & \cdots & u_{1j} & \cdots & u_{1n} \\ 0 & u_{22} & \cdots & u_{2j} & \cdots & u_{2n} \\ \vdots & \ddots & \ddots & \vdots & & \vdots \\ \vdots & & \ddots & u_{jj} & \cdots & u_{jn} \\ \vdots & & & \ddots & \ddots & \vdots \\ 0 & \cdots & \cdots & 0 & u_{nn} \end{bmatrix}.$$

Deve essere

$$a_{ij} = \sum_{k=1}^{n} l_{ik} u_{kj} = \sum_{k=1}^{\min(i,j)} l_{ik} u_{kj} \qquad i, j = 1, \dots, n.$$
 (3.24)

Considerando prima il caso $i \leq j$, uguagliando la parte triangolare superiore delle matrici abbiamo

$$a_{ij} = \sum_{k=1}^{i} l_{ik} u_{kj} \qquad j \ge i \tag{3.25}$$

ovvero

$$a_{ij} = \sum_{k=1}^{i-1} l_{ik} u_{kj} + l_{ii} u_{ij} = \sum_{k=1}^{i-1} l_{ik} u_{kj} + u_{ij}$$
 $j \ge i$

infine risulta

$$u_{ij} = a_{ij} - \sum_{k=1}^{i-1} l_{ik} u_{kj} \qquad j \ge i$$
 (3.26)

e ovviamente $u_{1j} = a_{1j}$, per j = 1, ..., n. Considerando ora il caso j < i, uguagliando cioè le parti strettamente triangolari inferiori delle matrici risulta:

$$a_{ij} = \sum_{k=1}^{j} l_{ik} u_{kj} \qquad i > j \tag{3.27}$$

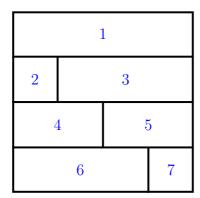
ovvero

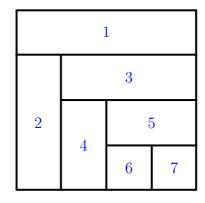
$$a_{ij} = \sum_{k=1}^{j-1} l_{ik} u_{kj} + l_{ij} u_{jj}$$
 $i > j$

da cui

$$l_{ij} = \frac{1}{u_{jj}} \left(a_{ij} - \sum_{k=1}^{j-1} l_{ik} u_{kj} \right) \qquad i > j.$$
 (3.28)

Si osservi che le formule (3.26) e (3.28) vanno implementate secondo uno degli schemi riportati nella seguente figura.





Tecnica di Crout

Tecnica di Doolittle

Ogni schema rappresenta in modo schematico una matrice la cui parte triangolare superiore indica la matrice U mentre quella triangolare inferiore la matrice L mentre i numeri indicano l'ordine con cui gli elementi saranno calcolati. Per esempio applicando la tecnica di Crout si segue il seguente ordine:

- 1º Passo: Calcolo della prima riga di U;
- 2º Passo: Calcolo della seconda riga di L;
- 3° Passo: Calcolo della seconda riga di U;
- 4º Passo: Calcolo della terza riga di L;
- 5° Passo: Calcolo della terza riga di U;
- 6º Passo: Calcolo della quarta riga di L;
- 7° Passo: Calcolo della quarta riga di U;

e così via procedendo per righe in modo alternato. Nel caso della tecnica di Doolittle si seguono i seguenti passi:

- 1º Passo: Calcolo della prima riga di U;
- 2° Passo: Calcolo della prima colonna di L;
- 3° Passo: Calcolo della seconda riga di U;

- 4° Passo: Calcolo della seconda colonna di L;
- 5° Passo: Calcolo della terza riga di U;
- 6° Passo: Calcolo della terza colonna di L;
- 7° Passo: Calcolo della quarta riga di U.

La fattorizzazione LU è un metodo sostanzialmente equivalente al metodo di Gauss, infatti la matrice U che viene calcolata coincide con la matrice $A^{(n)}$. Lo svantaggio del metodo di fattorizzazione diretto risiede essenzialmente nella maggiore difficoltà, rispetto al metodo di Gauss, di poter programmare una strategia di pivot. Infatti se un elemento diagonale della matrice U è uguale a zero non è possibile applicare l'algoritmo.

```
function [L,U]=crout(A);
%
% La funzione calcola la fattorizzazione LU della
% matrice A applicando la tecnica di Crout
%
% L = matrice triang. inferiore con elementi diagonali
      uguali a 1
% U = matrice triangolare superiore
[m n] = size(A);
U = zeros(n);
L = eve(n);
U(1,:) = A(1,:);
for i=2:n
    for j=1:i-1
        L(i,j) = (A(i,j) - L(i,1:j-1)*U(1:j-1,j))/U(j,j);
    end
    for j=i:n
        U(i,j) = A(i,j) - L(i,1:i-1)*U(1:i-1,j);
    end
end
return
```

function [L,U]=doolittle(A);

```
% La funzione calcola la fattorizzazione LU della
% matrice A applicando la tecnica di Doolittle
% L = matrice triang. inferiore con elementi diagonali
      uguali a 1
% U = matrice triangolare superiore
[m n] = size(A);
L = eye(n);
U = zeros(n);
U(1,:) = A(1,:);
for i=1:n-1
    for riga=i+1:n
        L(riga,i)=(A(riga,i)-L(riga,1:i-1)*U(1:i-1,i))/U(i,i);
    end
    for col=i+1:n
        U(i+1,col) = A(i+1,col)-L(i+1,1:i)*U(1:i,col);
    end
end
return
```

Esempio 3.3.4 Applicare la tecnica di Doolittle per calcolare la fattorizzazione LU della matrice

$$A = \begin{bmatrix} 1 & -1 & 3 & -4 \\ 2 & -3 & 9 & -9 \\ 3 & 1 & -1 & -10 \\ 1 & 2 & -4 & -1 \end{bmatrix}.$$

Gli elementi della prima riga di U vanno calcolati utilizzando la formula (3.26) con i = 1:

$$u_{1j} = a_{1j} - \sum_{k=1}^{0} l_{1k} u_{kj} = a_{1j}, \quad j = 1, 2, 3, 4.$$

Quindi

$$U = \begin{bmatrix} 1 & -1 & 3 & -4 \\ 0 & u_{22} & u_{23} & u_{24} \\ 0 & 0 & u_{33} & u_{34} \\ 0 & 0 & 0 & u_{44} \end{bmatrix}.$$

Gli elementi della prima colonna di L si ottengono applicando la formula (3.28) con j = 1:

$$l_{i1} = \frac{1}{u_{11}} \left(a_{i1} - \sum_{k=1}^{0} l_{ik} u_{k1} \right) = \frac{a_{i1}}{u_{11}}, \quad i = 2, 3, 4,$$

da cui

$$l_{21} = \frac{a_{21}}{u_{11}} = 2;$$
 $l_{31} = \frac{a_{31}}{u_{11}} = 3;$ $l_{41} = \frac{a_{41}}{u_{11}} = 1.$

La matrice L risulta essere, al momento, la seguente

$$L = \left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 3 & l_{32} & 1 & 0 \\ 1 & l_{42} & l_{43} & 1 \end{array} \right].$$

Gli elementi della seconda riga di U vanno calcolati utilizzando la formula (3.26) con i=2:

$$u_{2j} = a_{2j} - \sum_{k=1}^{1} l_{2k} u_{kj} = a_{2j} - l_{21} u_{1j}, \qquad j = 2, 3, 4,$$

quindi

$$u_{22} = a_{22} - l_{21}u_{12} = -3 - 2 \cdot (-1) = -1;$$

$$u_{23} = a_{23} - l_{21}u_{13} = 9 - 2 \cdot (3) = 3;$$

$$u_{24} = a_{24} - l_{21}u_{14} = -9 - 2 \cdot (-4) = -1.$$

$$U = \begin{bmatrix} 1 & -1 & 3 & -4 \\ 0 & -1 & 3 & -1 \\ 0 & 0 & u_{33} & u_{34} \\ 0 & 0 & 0 & u_{44} \end{bmatrix}.$$

Gli elementi della seconda colonna di L si ottengono applicando la formula (3.28) con j=2:

$$l_{i2} = \frac{1}{u_{22}} \left(a_{i2} - \sum_{k=1}^{1} l_{ik} u_{k2} \right) = \frac{a_{i2} - l_{i1} u_{12}}{u_{22}}, \qquad i = 3, 4,$$

$$l_{32} = \frac{a_{32} - l_{31} u_{12}}{u_{22}} = \frac{1 - 3 \cdot (-1)}{-1} = -4,$$

$$l_{42} = \frac{a_{42} - l_{41} u_{12}}{u_{22}} = \frac{2 - 1 \cdot (-1)}{-1} = -3.$$

$$L = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 3 & -4 & 1 & 0 \\ 1 & -3 & l_{43} & 1 \end{bmatrix}.$$

Gli elementi della teza riga di U sono:

$$u_{3j} = a_{3j} - \sum_{k=1}^{2} l_{3k} u_{kj} = a_{3j} - l_{31} u_{1j} - l_{32} u_{2j}, \qquad j = 3, 4,$$

quindi

$$\begin{array}{ll} u_{33} &= a_{33} - l_{31}u_{13} - l_{32}u_{23} = -1 - 3\cdot(3) - (-4)\cdot 3 = 2, \\ u_{34} &= a_{34} - l_{31}u_{14} - l_{32}u_{24} = -10 - 3\cdot(-4) - (-4)\cdot(-1) = -2. \end{array}$$

Le matrici sono diventate

$$L = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 3 & -4 & 1 & 0 \\ 1 & -3 & l_{43} & 1 \end{bmatrix}, \qquad U = \begin{bmatrix} 1 & -1 & 3 & -4 \\ 0 & -1 & 3 & -1 \\ 0 & 0 & 2 & -2 \\ 0 & 0 & 0 & u_{44} \end{bmatrix}.$$

L'unico elemento della terza colonna di L è:

$$l_{43} = \frac{1}{u_{33}} \left(a_{43} - \sum_{k=1}^{2} l_{4k} u_{k3} \right) =$$

ovvero

$$l_{43} = \frac{a_{43} - l_{41}u_{13} - l_{42}u_{23}}{u_{33}} = \frac{-4 - 1 \cdot 3 - (-3) \cdot 3}{2} = 1,$$

L'ultimo elemento da calcolare è:

$$u_{44} = a_{44} - \sum_{k=1}^{3} l_{4k} u_{k4}$$

$$= a_{44} - l_{41}u_{14} - l_{42}u_{24} - l_{43}u_{34} = -1 + 4 - 3 + 2 = 2.$$

Le matrici $L \operatorname{ed} U$ sono pertanto

$$L = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 3 & -4 & 1 & 0 \\ 1 & -3 & 1 & 1 \end{bmatrix},$$

е

$$U = \left[\begin{array}{cccc} 1 & -1 & 3 & -4 \\ 0 & -1 & 3 & -1 \\ 0 & 0 & 2 & -2 \\ 0 & 0 & 0 & 2 \end{array} \right].$$

Esercizio 3.3.1 Risolvere il problema descritto nell'esempio 3.3.2 calcolando la fattorizzazione LU della matrice A.

3.4 Condizionamento di sistemi lineari

Nel Capitolo 1 è stato introdotto il concetto di rappresentazione in base ed è stata motivata la sostanziale inaffidabilità dei risultati dovuti ad elaborazioni numeriche, a causa dell'artimetica finita dell'elaboratore. Appare chiaro come la bassa precisione nel calcolo potrebbe fornire dei risultati numerici molto lontani da quelli reali. In alcuni casi tale proprietà è insita nel problema. Consideriamo il sistema lineare

$$A\mathbf{x} = \mathbf{b} \tag{3.29}$$

dove $A \in \mathbb{R}^{n \times n}$ è la cosiddetta matrice di Hilbert, i cui elementi sono

$$a_{ij} = \frac{1}{i+j-1}, \quad i, j = 1, \dots, n$$

mentre il vettore \mathbf{b} è scelto in modo tale che il vettore soluzione abbia tutte componenti uguali a 1, cosicchè si possa conoscere con esattezza l'errore commesso nel suo calcolo. Risolvendo il sistema di ordine 20 con il metodo di Gauss senza pivoting si osserva che la soluzione è, in realtà, molto lontana da quella teorica. Questa situazione peggiora prendendo matrici di dimensioni crescenti ed è legata ad un fenomeno che viene detto malcondizionamento. Bisogna infatti ricordare che, a causa degli errori legati alla rappresentazione dei numeri reali, il sistema che l'elaboratore risolve non coincide con quello teorico, poichè alla matrice A ed al vettore \mathbf{b} e necessario aggiungere la matrice δA ed il vettore $\delta \mathbf{b}$ (che contengono le perturbazioni legate a tali errori), e che la soluzione ovviamente non è la stessa, pertanto la indichiamo con $\mathbf{x} + \delta \mathbf{x}$:

$$(A + \delta A)(\mathbf{x} + \delta \mathbf{x}) = \mathbf{b} + \delta \mathbf{b}.$$
 (3.30)

Si può dimostrare che l'ordine di grandezza della perturbazione sulla soluzione è

 $\frac{\|\delta \mathbf{x}\|}{\|\mathbf{x}\|} \le \|A\| \|A^{-1}\| \left(\frac{\|\delta A\|}{\|A\|} + \frac{\|\delta \mathbf{b}\|}{\|\mathbf{b}\|} \right).$

Il numero $K(A) = ||A|| ||A^{-1}||$, detto indice di condizionamento del sistema, misura le amplificazioni degli errori sui dati del problema (ovvero la misura di quanto aumentano gli errori sulla soluzione). Il caso della matrice di Hilbert è appunto uno di quelli per cui l'indice di condizionamento assume valori molto grandi (di ordine esponenziale) all'aumentare della dimensione, si parla infatti di matrici malcondizionate. Quando ciò non accade si parla invece di matrici bencondizionate. A volte tale caratteristica può dipendere anche dalla scelta dell'algoritmo di risoluzione, ovvero vi sono algoritmi che forniscono risultati meno influenzati dal condizionamento dei dati (eseguendo il metodo di Gauss con pivoting parziale, per esempio, i risultati sono affetti comunque da errori, ma di meno rispetto al metodo di Gauss senza alcuna strategia di pivoting).

3.5 Metodi iterativi per sistemi lineari

3.5.1 Il Metodo di Jacobi

Nella applicazioni numeriche spesso i sistemi lineari che si devono risolvere sono di grandi dimensione e hanno una struttura sparsa, cioè una buona parte degli elementi della matrice dei coefficienti sono nulli. Quando si applicano i metodi diretti a tali sistemi succede che le matrici perdono la struttura di sparsità, cioè molti elementi nulli diventano diversi da zero e inoltre si ha il problema di gestire matrici di grosse dimensioni, il che può causare un notevole degrado delle prestazioni dei metodi usati. Per questi motivi si introduce una nuova classe di metodi, detti metodi iterativi. Supponiamo di dover risolvere il sistema $A\mathbf{x} = \mathbf{b}$, con A matrice non singolare, $\mathbf{b} \neq 0$. Assumiamo inoltre che gli elementi diagonali della matrice a_{ii} , $i = 1, \ldots, n$, siano diversi da 0. La i-esima equazione del sistema si scrive

$$a_{i1}x_1 + a_{i2}x_2 + \cdots + a_{in}x_n = b_i$$

e, isolando x_i risulta:

$$x_i = \left(b_i - \sum_{j=1, j \neq i}^n a_{ij} x_j\right) \frac{1}{a_{ii}} \qquad i = 1, \dots, n.$$

Queste n equazioni sono del tutto equivalenti al sistema di partenza tuttavia la loro forma suggerisce particolari procedimenti iterativi per cercare la soluzione. A partire da un'approssimazione iniziale $\mathbf{x}^{(0)} = (x_1^{(0)}, x_2^{(0)}, \dots, x_n^{(0)})$ si calcola la successione di vettori $\{\mathbf{x}^{(k)}\}$ ponendo

$$x_i^{(k+1)} = \left(b_i - \sum_{j=1}^n a_{ij} x_j^{(k)}\right) \frac{1}{a_{ii}} \qquad i = 1, \dots, n;$$
 (3.31)

 $con k = 0, 1, 2, \dots$

La generica componente i—esima del vettore al passo k+1 è calcolata per mezzo di tutte le componenti del vettore al passo k eccetto la i—esima. Questo procedimento iterativo prende il nome di $metodo\ di\ Jacobi$.

3.5.2 Il Metodo di Gauss-Seidel

Una variante del metodo di Jacobi si ottiene osservando che, quando si calcola $x_i^{(k+1)}$ si possono utilizzare le approssimazioni $x_j^{(k+1)}$, con $j=1,\ldots,i-1$, ottenendo

$$x_i^{(k+1)} = \frac{1}{a_{ii}} \left(b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} - \sum_{j=i+1}^n a_{ij} x_j^{(k)} \right).$$
 (3.32)

Si ottiene in questo modo il classico $Metodo\ di\ Gauss-Seidel$, dove la componente i-esima al passo k+1 è calcolata per mezzo delle componenti dalla prima alla i-1-esima al passo k+1 e dalla i+1-esima alla n-esima al passo k. Si deve osservare che entrambi i metodi appena introdotti non utilizzano la componente i-esima al passo k. Per questo si introduce una nuova variante che coinvolge tale valore a partire da un parametro $\omega \neq 0$. Si propone lo schema

$$x_i^{(k+1)} = \frac{\omega}{a_{ii}} \left[b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} - \sum_{j=i+1}^n a_{ij} x_j^{(k)} \right] + (1 - \omega) x_i^{(k)}.$$
 (3.33)

Questa classe di metodi prende il nome di Metodi di Rilassamento. Si osserva facilmente che se si pone $\omega=1$ il metodo di Rilassamento coincide con il metodo di Gauss-Seidel.

Tutti i metodi appena descritti sono molto efficaci quando la matrice dei coefficienti ha pochi elementi diversi da zero (ovvero se la matrice è sparsa)

poichè si evita di eseguire prodotti del tipo $a_{ij}x_j$ quando a_{ij} è nullo. Per decidere quando fermare il calcolo delle iterazioni si può pensare di fissare a priori una tolleranza ε e prendere $\mathbf{x}^{(k+1)}$ come approssimazione della soluzione quando risulta

$$\frac{\|\mathbf{x}^{(k+1)} - \mathbf{x}^{(k)}\|}{\|\mathbf{x}^{(k+1)}\|} < \varepsilon$$

per una fissata norma vettoriale, per esempio scegliendo la norma infinito il criterio di arresto diviene

$$\frac{\max\limits_{1\leq i\leq n}\left|\mathbf{x}_{i}^{(k+1)}-\mathbf{x}_{i}^{(k)}\right|}{\max\limits_{1\leq i\leq n}\left|\mathbf{x}_{i}^{(k+1)}\right|}<\varepsilon.$$

Di solito si sceglie come approssimazione iniziale $\mathbf{x}^{(0)}$ il vettore nullo.

Capitolo 4

Interpolazione di dati e Funzioni

4.1 Introduzione

Nel campo del Calcolo Numerico si possono incontrare diversi casi nei quali è richiesta l'approssimazione di una funzione (o di una grandezza incognita): 1) non è nota l'espressione analitica della funzione f(x) ma si conosce il valore che assume in un insieme finito di punti x_1, x_2, \ldots, x_n . Si potrebbe pensare anche che tali valori siano delle misure di una grandezza fisica incognita valutate in differenti istanti di tempo.

2) Si conosce l'espressione analitica della funzione f(x) ma è così complicata dal punto di vista computazionale che è più conveniente cercare un'espressione semplice partendo dal valore che essa assume in un insieme finito di punti. In questo capitolo analizzeremo un particolare tipo di approssimazione di funzioni cioè la cosiddetta interpolazione che richiede che la funzione approssimante assume in determinate ascisse esattamente lo stesso valore di f(x). In entrambi i casi appena citati è noto, date certe informazioni supplementari, che la funzione approssimante va ricercata della forma:

$$f(x) \simeq g(x; a_0, a_1, \dots, a_n).$$
 (4.1)

Se i parametri a_0, a_1, \ldots, a_n sono definiti dalla condizione di coincidenza di f e g nei punti x_0, x_1, \ldots, x_n , allora tale procedimento di approssimazione si chiama appunto Interpolazione. Invece se $x \notin [\min_i x_i, \max_i x_i]$ allora si parla di *Estrapolazione*. Tra i procedimenti di interpolazione il più usato è

quello in cui si cerca la funzione g in (4.1) nella forma

$$g(x; a_0, a_1, \dots, a_n) = \sum_{i=0}^{n} a_i \Phi_i(x)$$

dove $\Phi_i(x)$, per $i = 0, \ldots, n$, sono funzioni fissate e i valori di a_i , $i = 0, \ldots, n$, sono determinati in base alle condizioni di coincidenza di f con la funzione approssimante nei punti di interpolazione (detti anche nodi), x_j , cioè si pone

$$f(x_j) = \sum_{i=0}^{n} a_i \Phi_i(x_j)$$
 $j = 0, \dots, n.$ (4.2)

Il processo di determinazione degli a_i attraverso la risoluzione del sistema (4.2) si chiama metodo dei coefficienti indeterminati. Il caso più studiato è quello dell'interpolazione polinomiale, in cui si pone:

$$\Phi_i(x) = x^i \qquad i = 0, \dots, n$$

e perciò la funzione approssimante q assume la forma

$$\sum_{i=0}^{n} a_i x^i,$$

mentre le condizioni di coincidenza diventano

$$a_{0} + a_{1}x_{0} + a_{2}x_{0}^{2} + \dots + a_{n-1}x_{0}^{n-1} + a_{n}x_{0}^{n} = f(x_{0})$$

$$a_{0} + a_{1}x_{1} + a_{2}x_{1}^{2} + \dots + a_{n-1}x_{1}^{n-1} + a_{n}x_{1}^{n} = f(x_{1})$$

$$\vdots \quad \vdots \quad \vdots \qquad \vdots$$

$$a_{0} + a_{1}x_{n} + a_{2}x_{n}^{2} + \dots + a_{n-1}x_{n}^{n-1} + a_{n}x_{n}^{n} = f(x_{n})$$

$$(4.3)$$

Le equazioni (4.3) costituiscono un sistema di n+1 equazioni nelle n+1 incognite a_i , $i=0,\ldots,n$:

$$V\mathbf{a} = \mathbf{v}$$

dove la matrice dei coefficienti è

$$V = \begin{bmatrix} 1 & x_0 & x_0^2 & \dots & x_0^{n-1} & x_0^n \\ 1 & x_1 & x_1^2 & \dots & x_1^{n-1} & x_1^n \\ & & & & & \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^{n-1} & x_n^n \end{bmatrix},$$

i vettori dei termini noti e delle incognite sono, rispettivamente,

$$\mathbf{y} = [f(x_0), f(x_1), \dots, f(x_n)]^T$$

e
$$\mathbf{a} = [a_0, a_1, \dots, a_n]^T$$
.

Se i nodi x_j sono a due a due distinti allora la matrice dei coefficienti del sistema (4.3), detta matrice di Vandermonde, è non singolare e pertanto il problema dell'interpolazione ammette sempre un'unica soluzione. Il metodo dei coefficienti indeterminati consente di trovare la soluzione del problema solo risolvendo un sistema lineare che potrebbe avere grandi dimensioni, essere malcondizionato (soprattutto se due nodi sono molto vicini) e comunque non in grado di fornire un'espressione in forma chiusa del polinomio. Per questi motivi descriviamo un modo alternativo per risolvere il problema di interpolazione in grado di fornire l'espressione esplicita del polinomio cercato.

4.2 Il Polinomio Interpolante di Lagrange

Al fine di dare una forma esplicita al polinomio interpolante, scriviamo il candidato polinomio nella seguente forma:

$$L_n(x) = \sum_{k=0}^{n} l_{nk}(x) f(x_k)$$
 (4.4)

dove gli $l_{nk}(x)$ sono per il momento generici polinomi di grado n. Imponendo le condizioni di interpolazione

$$L_n(x_i) = f(x_i) \qquad i = 0, \dots, n$$

deve essere, per ogni i:

$$L_n(x_i) = \sum_{k=0}^{n} l_{nk}(x_i) f(x_k) = f(x_i)$$

ed è evidente che se

$$l_{nk}(x_i) = \begin{cases} 0 & \text{se } k \neq i \\ 1 & \text{se } k = i \end{cases}$$

$$(4.5)$$

allora esse sono soddisfatte. Infatti calcolando il polinomio (4.4) in un generico nodo x_i risulta

$$L_n(x_i) = \sum_{k=0}^n l_{nk}(x_i) f(x_k)$$

$$= \underbrace{\sum_{k=0}^{i-1} l_{nk}(x_i) f(x_k)}_{=0} + \underbrace{\underbrace{l_{ni}(x_i)}_{=1} f(x_i)}_{=1} f(x_i) + \underbrace{\sum_{k=i+1}^{n} l_{nk}(x_i) f(x_k)}_{=0} = f(x_i).$$

Per determinare l'espressione del generico polinomio $l_{nk}(x)$ osserviamo che la prima condizione di (4.5) indica che esso si annulla negli n nodi $x_0, x_1, \ldots, x_{k-1}, x_{k+1}, \ldots, x_n$ pertanto deve essere

$$l_{nk}(x) = c_k \prod_{i=0, i \neq k}^{n} (x - x_i)$$

mentre impondendo la seconda condizione di (4.5)

$$l_{nk}(x_k) = c_k \prod_{i=0, i \neq k}^{n} (x_k - x_i) = 1$$

si trova immediatamente:

$$c_k = \frac{1}{\prod_{i=0, i \neq k}^{n} (x_k - x_i)}.$$

In definitiva il polinomio interpolante ha la seguente forma:

$$L_n(x) = \sum_{k=0}^n \left(\prod_{i=0, i \neq k}^n \frac{x - x_i}{x_k - x_i} \right) f(x_k). \tag{4.6}$$

Il polinomio (4.6) prende il nome di Polinomio di Lagrange mentre i polinomi:

$$l_{nk}(x) = \prod_{i=0}^{n} \frac{x - x_i}{x_k - x_i}; \qquad k = 0, 1, \dots, n$$

si chiamano Polinomi Fondamentali di Lagrange.

4.2.1 Il Resto del Polinomio di Lagrange

Assumiamo che la funzione interpolata f(x) sia di classe $C^{n+1}([a,b])$ e valutiamo l'errore che si commette nel sostituire f(x) con $L_n(x)$ in un punto $x \neq x_i$. Supponiamo che l'intervallo [a,b] sia tale da contenere sia i nodi x_i che l'ulteriore punto x. Sia dunque

$$e(x) = f(x) - L_n(x)$$

l'errore (o resto) commesso nell'interpolazione della funzione f(x). Poichè

$$e(x_i) = f(x_i) - L_n(x_i) = 0$$
 $i = 0, ..., n$

è facile congetturare per e(x) la seguente espressione:

$$e(x) = c(x)\omega_{n+1}(x)$$

dove

$$\omega_{n+1}(x) = \prod_{i=0}^{n} (x - x_i)$$

è il cosiddetto polinomio nodale mentre c(x) è una funzione da determinare. Definiamo ora la funzione

$$\Phi(t;x) = f(t) - L_n(t) - c(x)\omega_{n+1}(t)$$

dove t è una variabile ed x è un valore fissato. Calcoliamo la funzione $\Phi(t;x)$ nei nodi x_i :

$$\Phi(x_i; x) = f(x_i) - L_n(x_i) - c(x)\omega_{n+1}(x_i) = 0$$

e anche nel punto x:

$$\Phi(x;x) = f(x) - L_n(x) - c(x)\omega_{n+1}(x) = e(x) - c(x)\omega_{n+1}(x) = 0$$

pertanto la funzione $\Phi(t;x)$ (che è derivabile con continuità n+1 volte poichè f(x) è di classe \mathcal{C}^{n+1}) ammette almeno n+2 zeri distinti. Applicando il teorema di Rolle segue che $\Phi'(t;x)$ ammette almeno n+1 zeri distinti. Riapplicando lo stesso teorema segue che $\Phi''(t;x)$ ammette almeno n zeri distinti. Così proseguendo segue che

$$\exists \xi_x \in [a, b] \ \ni' \ \Phi^{(n+1)}(\xi_x; x) = 0.$$

Calcoliamo ora la derivata di ordine n+1 della funzione $\Phi(t;x)$, osservando innanzitutto che la derivata di tale ordine del polinomio $L_n(x)$ è identicamente nulla. Pertanto

$$\Phi^{(n+1)}(t;x) = f^{(n+1)}(t) - c(x)\frac{d^{n+1}}{dt^{n+1}}\omega_{n+1}(t).$$

Calcoliamo la derivata di ordine n+1 del polinomio nodale. Osserviamo innanzitutto che

$$\omega_{n+1}(t) = \prod_{i=0}^{n} (t - x_i) = t^{n+1} + p_n(t)$$

dove $p_n(t)$ è un polinomio di grado al più n. Quindi

$$\frac{d^{n+1}}{dt^{n+1}}\omega_{n+1}(t) = \frac{d^{n+1}}{dt^{n+1}}t^{n+1}.$$

Poichè

$$\frac{d}{dt}t^{n+1} = (n+1)t^n$$

е

$$\frac{d^2}{dt^2}t^{n+1} = (n+1)nt^{n-1}$$

è facile dedurre che

$$\frac{d^{n+1}}{dt^{n+1}}t^{n+1} = \frac{d^{n+1}}{dt^{n+1}}\omega_{n+1}(t) = (n+1)!.$$

Pertanto

$$\Phi^{(n+1)}(t;x) = f^{(n+1)}(t) - c(x)(n+1)!$$

e

$$\Phi^{(n+1)}(\xi_x; x) = f^{(n+1)}(\xi_x) - c(x)(n+1)! = 0$$

cioè

$$c(x) = \frac{f^{(n+1)}(\xi_x)}{(n+1)!}$$

e in definitiva

$$e(x) = \frac{f^{(n+1)}(\xi_x)}{(n+1)!} \omega_{n+1}(x). \tag{4.7}$$

Esempio 4.2.1 Supponiamo di voler calcolare il polinomio interpolante di Lagrange passante per i punti (-1, -1), (0, 1), (1, -1), (3, 2) e (5, 6). Il grado di tale polinomio è 4, quindi definiamo i nodi

$$x_0 = -1$$
, $x_1 = 0$, $x_2 = 1$, $x_3 = 3$, $x_4 = 5$,

cui corrispondono le ordinate che indichiamo con y_i , i = 0, ..., 4:

$$y_0 = -1$$
, $y_1 = 1$, $y_2 = -1$, $y_3 = 2$, $y_4 = 6$.

Scriviamo ora l'espressione del polinomio $L_4(x)$:

$$L_4(x) = l_{4,0}(x)y_0 + l_{4,1}(x)y_1 + l_{4,2}(x)y_2 + l_{4,3}(x)y_3 + l_{4,4}(x)y_4$$
 (4.8)

e calcoliamo i 5 polinomi fondamentali di Lagrange:

$$l_{4,0}(x) = \frac{(x-0)(x-1)(x-3)(x-5)}{(-1-0)(-1-1)(-1-3)(-1-5)}$$

$$= \frac{1}{48} x(x-1)(x-3)(x-5)$$

$$l_{4,1}(x) = \frac{(x+1)(x-1)(x-3)(x-5)}{(0+1)(0-1)(0-3)(0-5)}$$

$$= -\frac{1}{15}(x+1)(x-1)(x-3)(x-5)$$

$$l_{4,2}(x) = \frac{(x+1)(x-0)(x-3)(x-5)}{(1+1)(1-0)(1-3)(1-5)}$$

$$= \frac{1}{16}x(x+1)(x-3)(x-5)$$

$$l_{4,3}(x) = \frac{(x+1)(x-0)(x-1)(x-5)}{(3+1)(3-0)(3-1)(3-5)}$$

$$= -\frac{1}{48}x(x+1)(x-1)(x-5)$$

$$l_{4,4}(x) = \frac{(x+1)(x-0)(x-1)(x-3)}{(5+1)(5-0)(5-1)(5-3)}$$

$$= \frac{1}{240}x(x+1)(x-1)(x-3)$$

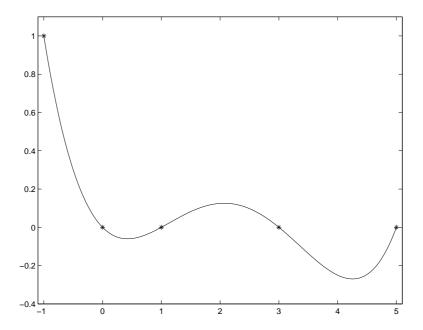


Figura 4.1: Grafico del polinomio $l_{40}(x)$.

Sostituendo in (4.8) il valore della funzione nei nodi si ottiene l'espressione finale del polinomio interpolante:

$$L_4(x) = -l_{4,0}(x) + l_{4,1}(x) - l_{4,2}(x) + 2l_{4,3}(x) + 6l_{4,4}(x).$$

Se vogliamo calcolare il valore approssimato della funzione f(x) in un'ascissa diversa dai nodi, per esempio x=2 allora dobbiamo calcolare il valore del polinomio interpolante $L_4(2)$.

Nelle figure 4.1-4.5 sono riportati i grafici dei cinque polinomi fondamentali di Lagrange: gli asterischi evidenziano il valore assunto da tali polinomi nei nodi di interpolazione. Nella figura 4.6 è tracciato il grafico del polinomio interpolante di Lagrange, i cerchi evidenziano ancora una volta i punti di interpolazione.

4.2.2 Il fenomeno di Runge

Nell'espressione dell'errore è presente, al denominatore, il fattore (n + 1)!, che potrebbe indurre a ritenere che, utilizzando un elevato numero di nodi, l'errore tenda a zero ed il polinomio interpolante converga alla funzione

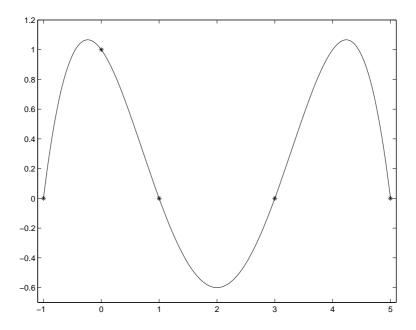


Figura 4.2: Grafico del polinomio $l_{41}(x)$.

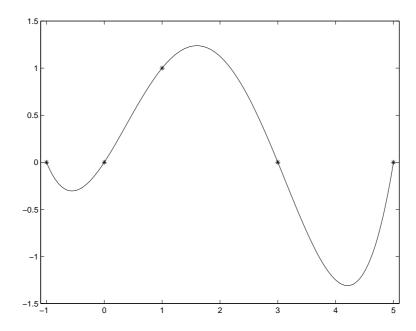


Figura 4.3: Grafico del polinomio $l_{42}(x)$.

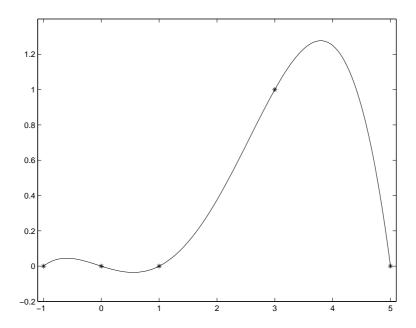


Figura 4.4: Grafico del polinomio $l_{43}(x)$.

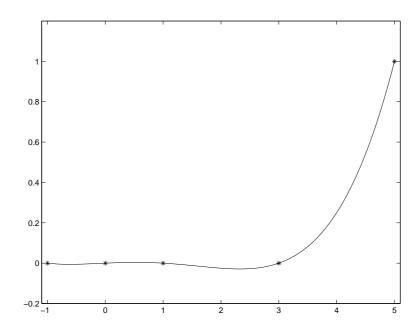


Figura 4.5: Grafico del polinomio $l_{44}(x)$.

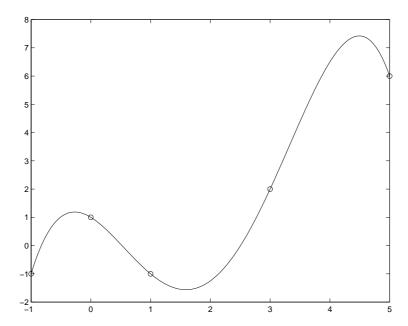


Figura 4.6: Grafico del polinomio interpolante di Lagrange $L_4(x)$.

f(x). Questa ipotesi è confutata se si costruisce il polinomio che interpola la funzione

$$f(x) = \frac{1}{1+x^2}$$

nell'intervallo [-5, 5] e prendendo 11 nodi equidistanti $-5, -4, -3, \ldots, 3, 4, 5$. Nella successiva figura viene appunto visualizzata la funzione (in blu) ed il relativo polinomio interpolante (in rosso).

Il polinomio interpolante presenta infatti notevoli oscillazioni, soprattutto verso gli estremi dell'intervallo di interpolazione, che diventano ancora più evidenti all'aumentare di n. Tale fenomeno, detto appunto fenomeno di Runge, è dovuto ad una serie di situazioni concomitanti:

- 1. il polinomio nodale, al crescere di n, assume un'andamento fortemente oscillante, soprattutto quando i nodi sono equidistanti;
- 2. alcune funzioni, come quella definita nell'esempio, hanno le derivate il cui valore tende a crescere con un ordine di grandezza talmente elevato da neutralizzare di fatto la presenza del fattoriale al denominatore dell'espressione dell'errore.

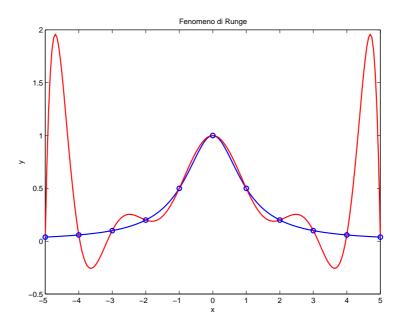


Figura 4.7: Il fenomeno di Runge.

Per ovviare al fenomeno di Runge si possono utilizzare insiemi di nodi non equidistanti oppure utilizzare funzioni interpolanti polinomiali a tratti (interpolando di fatto su intervalli più piccoli e imponendo le condizioni di continuità fino ad un ordine opportuno).

```
function yy=lagrange(x,y,xx);

%
    La funzione calcola il polinomio interpolante di Lagrange
% in un vettore assegnato di ascisse

%
    Parametri di input
% x = vettore dei nodi
% y = vettore delle ordinate nei nodi
% xx = vettore delle ascisse in cui calcolare il polinomio
% Parametri di output
% yy = vettore delle ordinate del polinomio
%
n = length(x);
m = length(xx);
```

4.3 Minimizzazione del Resto nel Problema di Interpolazione

Supponiamo che la funzione f(x) sia approssimata su [a, b] dal polinomio interpolante $L_n(x)$ e siano x_0, x_1, \ldots, x_n i nodi di interpolazione. Come già sappiamo se $x \in [a, b]$ risulta

$$e(x) = f(x) - L_n(x) = \frac{f^{(n+1)}(\xi_x)}{(n+1)!} \omega_{n+1}(x) \qquad \xi_x \in [a, b]$$

e dove

$$\omega_{n+1}(x) = \prod_{i=0}^{n} (x - x_i).$$

Si noti che variando i nodi x_i , $i=0,\ldots,n$, cambia il polinomio $\omega_{n+1}(x)$ e di conseguenze cambia l'errore. Ha senso allora porsi il seguente problema: indicato con \mathcal{P}_{n+1} l'insieme di tutti i polinomi di grado al più n+1 cerchiamo il polinomio $\tilde{p} \in \mathcal{P}_{n+1}$ tale che:

$$\max_{x \in [a,b]} |\tilde{p}(x)| = \min_{p \in \mathcal{P}_{n+1}} \max_{x \in [a,b]} |p(x)|. \tag{4.9}$$

Per dare una risposta a questo problema è essenziale introdurre i Polinomi di Chebyshev di 1^a Specie.

4.3.1 Polinomi di Chebyshev

I polinomi di Chebyshev $T_n(x)$, $n \geq 0$, sono così definiti:

$$T_n(x) = \cos(n\arccos x) \tag{4.10}$$

per $x \in [-1, 1]$. Per esempio:

$$T_0(x) = \cos(0 \arccos x) = \cos 0 = 1$$

 $T_1(x) = \cos(1 \arccos x) = x$

e così via. È possibile ricavare una relazione di ricorrenza sui polinomi di Chebyshev che permette un più agevole calcolo. Infatti, posto

$$\arccos x = \theta$$
 (ovvero $x = \cos \theta$)

risulta

$$T_n(x) = \cos n\theta(x)$$
.

Considerando le relazioni

$$T_{n+1}(x) = \cos(n+1)\theta = \cos n\theta \cos \theta - \sin n\theta \sin \theta$$

$$T_{n-1}(x) = \cos(n-1)\theta = \cos n\theta \cos \theta + \sin n\theta \sin \theta$$

e sommandole membro a membro,

$$T_{n+1}(x) + T_{n-1}(x) = 2\cos\theta\cos n\theta = 2xT_n(x)$$

si ricava la seguente relazione di ricorrenza

$$T_{n+1}(x) = 2x \ T_n(x) - T_{n-1}(x), \qquad n \ge 1$$
 (4.11)

che, insieme all'espressione dei primi due polinomi,

$$T_0(x) = 1,$$
 $T_1(x) = x.$

consente di calcolare tutti i polinomi di Chebyshev. L'espressione dei primi polinomi è la seguente

$$T_2(x) = 2xT_1(x) - T_0(x) = 2x^2 - 1$$

$$T_3(x) = 2xT_2(x) - T_1(x) = 4x^3 - 3x$$

$$T_4(x) = 2xT_3(x) - T_2(x) = 8x^4 - 8x^2 + 1$$

$$T_5(x) = 2xT_4(x) - T_3(x) = 16x^5 - 20x^3 + 5x$$

Le seguenti proprietà dei polinomi di Chebyshev sono di facile dimostrazione:

1.
$$\max_{x \in [-1,1]} |T_n(x)| = 1$$

2.
$$T_{2k}(x) = T_{2k}(-x)$$

3.
$$T_{2k+1}(x) = -T_{2k+1}(-x)$$

4.
$$T_n(x) = 2^{n-1}x^n + \dots$$

5. $T_n(x)$ assume complessivamente n+1 volte il valore +1 e -1 nei punti:

$$x_k = \cos\frac{k\pi}{n} \qquad k = 0, \dots, n;$$

$$T_n(x_k) = (-1)^k k = 0, \dots, n;$$

6. $T_n(x)$ ha n zeri distinti nell'intervallo] — 1,1[dati da

$$t_k = \cos\frac{(2k+1)\pi}{2n}$$
 $k = 0, \dots, n-1.$

Infatti è sufficiente porre

$$\cos n\theta = 0$$

da cui risulta

$$n\theta = \frac{\pi}{2} + k\pi = \frac{(2k+1)\pi}{2}, \qquad k = 0, \dots, n-1.$$

Nella Figura 4.8 sono tracciati i grafici dei primi cinque polinomi di Chebyshev nell'intervallo [-1,1]. Ovviamente per calcolare il valore del polinomio $T_n(x)$ in un punto x fissato si usa la formula di ricorrenza (4.11), in quanto tale espressione è valida per ogni $x \in \mathbb{R}$. Sia

$$\tilde{T}_n(x) = \frac{1}{2^{n-1}} T_n(x)$$

il polinomio di Chebyshev normalizzato in modo da risultare monico (ricordiamo che un polinomio di grado n è monico se il coefficiente del termine di grado massimo è 1). Vale allora la seguente proprietà di minimax.

Teorema 4.3.1 (proprietà di minimax) Se $p_n(x)$ è un qualunque polinomio monico di grado n si ha:

$$\frac{1}{2^{n-1}} = \max_{x \in [-1,1]} |\tilde{T}_n(x)| \le \max_{x \in [-1,1]} |p_n(x)|.$$

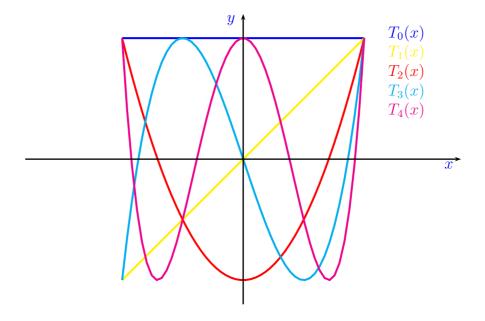


Figura 4.8: Grafico dei primi cinque polinomi di Chebyshev

Dimostrazione. Assumiamo per assurdo che sia

$$\max_{x \in [-1,1]} |p_n(x)| < \frac{1}{2^{n-1}}$$

e consideriamo il polinomio $d(x) = \tilde{T}_n(x) - p_n(x)$. Osserviamo subito che essendo sia $\tilde{T}_n(x)$ che $p_n(x)$ monici, d(x) è un polinomio di grado al più n-1. Siano t_0, t_1, \ldots, t_n i punti in cui T_n assume valore -1 e +1. Allora:

$$segn(d(t_k)) = segn(\tilde{T}_n(t_k) - p_n(t_k)) = segn(\tilde{T}_n(t_k)).$$

Poichè $\tilde{T}_n(x)$ cambia segno n volte anche d(x) cambia segno n volte e pertanto ammetterà n zeri, in contraddizione con il fatto che d(x) è un polinomio di grado al più n-1. \square

Osservazione. In verità vale un'affermazione più forte di quella del teorema, cioè se p(x) è un polinomio monico di grado n diverso da $\tilde{T}_n(x)$ allora:

$$\max_{x \in [-1,1]} |p(x)| > \frac{1}{2^{n-1}}.$$

Il teorema di minimax stabilisce che, tra tutti i polinomi di grado n definiti nell'intervallo [-1,1], il polinomio di Chebyshev monico è quello che ha il massimo più piccolo. Supponendo che l'intervallo di interpolazione della funzione f(x) sia appunto [-1,1] e scegliendo come nodi gi zeri del polinomio di Chebyshev risulta

$$\omega_{n+1}(x) = \tilde{T}_{n+1}(x)$$

pertanto

$$e(x) = \frac{f^{(n+1)}(\xi_x)}{(n+1)!} \tilde{T}_{n+1}(x)$$

e, massimizzando tale errore, risulta

$$\max_{x \in [-1,1]} |e(x)| \leq \max_{x \in [-1,1]} \left| \frac{f^{(n+1)}(\xi_x)}{(n+1)!} \right| \max_{x \in [-1,1]} |\omega_{n+1}(x)|$$
$$= \frac{1}{2^n (n+1)!} \max_{x \in [-1,1]} |f^{(n+1)}(\xi_x)|.$$

La crescita dell'errore può dipendere solo dalla derivata di ordine n+1 della funzione f(x).

Se l'intervallo di interpolazione è $[a,b] \neq [-1,1]$ allora il discorso può essere ripetuto egualmente effettuando una trasformazione lineare tra i due intervalli, nel modo riportato in Figura 4.9. Calcolando la retta nel piano (x,t) passante per i punti (-1,a) e (1,b):

$$t = \frac{b-a}{2}x + \frac{a+b}{2} \tag{4.12}$$

detti x_k gli zeri del polinomio di Chebyshev $T_{n+1}(x)$ allora si possono usare come nodi i valori

$$t_k = \frac{b-a}{2}x_k + \frac{a+b}{2}, \qquad k = 0, 1, \dots, n,$$

ovvero

$$t_k = \frac{b-a}{2}\cos\frac{(2k+1)\pi}{2(n+1)} + \frac{a+b}{2} \qquad k = 0, 1, \dots, n.$$
 (4.13)

Il polinomio di Chebyshev, traslato nell'intervallo [a, b], è

$$T_{n+1}^{[a,b]}(x) = T_{n+1}\left(\frac{2x - (b+a)}{b-a}\right),$$

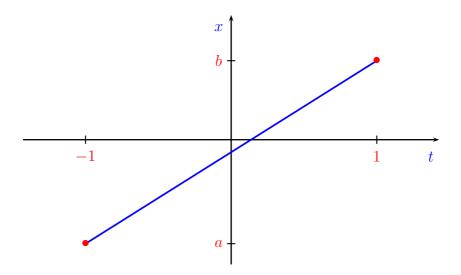


Figura 4.9: Trasformazione lineare tra gli intervalli [-1,1] e [a,b].

il cui coefficiente di grado massimo vale

$$2^{n} \frac{2^{n+1}}{(b-a)^{n+1}} = \frac{2^{2n+1}}{(b-a)^{n+1}}.$$

Se come nodi di interpolazione scegliamo i punti t_k dati da (4.13), cioè gli n+1 zeri del polinomio $\tilde{T}_{n+1}^{[a,b]}(x)$, allora abbiamo il polinomio monico è

$$\tilde{T}_{n+1}^{[a,b]}(x) = \frac{(b-a)^{n+1}}{2^{2n+1}} T_{n+1} \left(\frac{2x - (b+a)}{b-a} \right),$$

considerato che la trasformazione lineare inversa della (4.12) è

$$t = \frac{2x - (b+a)}{b-a}, \qquad x \in [a,b] \to t \in [-1,1]$$

quindi per l'errore dell'interpolazione vale la seguente maggiorazione:

$$\max_{x \in [a,b]} |e(x)| \leq \max_{x \in [a,b]} \left| \frac{f^{(n+1)}(\xi_x)}{(n+1)!} \right| \max_{x \in [a,b]} |\tilde{T}_{n+1}^{[a,b]}(x)|$$
$$= \max_{x \in [a,b]} \left| \frac{f^{(n+1)}(\xi_x)}{(n+1)!} \right| \frac{(b-a)^{n+1}}{2^{2n+1}}.$$

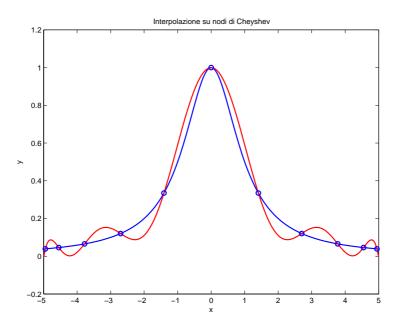


Figura 4.10: Interpolazione su nodi di Chebyshev.

Nella Figura 4.10 sono raffigurati la funzione di Runge ed il polinomio interpolante di Lagrange di grado 10 calcolato prendendo come nodi gli zeri del polinomio di Chebyshev di grado 11. Si può osservare la differenza con la Figura 4.7. Di seguito viene riportato il codice per tracciare il grafico del polinomio interpolante la funzione di Runge nei nodi di Chebyshev in un intervallo scelto dall'utente.

```
clear
format long e
a = input('Inserire estremo sinistro ');
b = input('Inserire estremo destro ');
n = input('Inserire il numero di nodi ');
%
% Calcolo del vettore dei nodi di Chebyshev
%
x = (a+b)/2+(b-a)/2*cos((2*[0:n-1]+1)*pi./(2*n));
xx = linspace(a,b,200);
y = 1./(x.^2+1);
yy = 1./(xx.^2+1);
```

```
%
% Calcolo del polinomio interpolante
%
zz = lagrange(x,y,xx);
figure(1)
plot(xx,yy)
hold on
pause
plot(x,y,'ok')
pause
plot(xx,zz,'r')
title('Grafico della funzione e del polinomio interpolante ')
hold off
figure(2)
plot(xx,abs(yy-zz))
title('Grafico dell'errore nell''interpolazione')
```

4.4 Interpolazione con Funzioni Polinomiali a Tratti

L'interpolazione polinomiale con un numero di nodi sufficientemente alto può dar luogo a polinomi interpolanti che mostrano un comportamento fortemente oscillatorio che può essere inaccettabile. In questo caso si preferisce usare una diversa strategia consistente nell'approssimare la funzione con polinomi di basso grado su sottointervalli dell'intervallo di definizione. Per esempio, supposto che l'intero n sia un multiplo di 3, denotiamo con $P_{3,j}(x)$ il polinomio di interpolazione di terzo grado associato ai nodi $x_{3j-3}, x_{3j-2}, x_{3j-1}, x_{3j}, j = 1, 2, ..., n/3$. Come funzione interpolante prendiamo poi la funzione:

$$I_n(x) = P_{3,j}(x)$$
 in $[x_{3j-3}, x_{3j}]$

che prende il nome di Funzione di tipo polinomiale a tratti. La tecnica esposta non è l'unica, anzi la più popolare è forse quella basata sull'uso delle cosiddette Funzioni Spline.

4.4.1 Interpolazione con Funzioni Spline

Con il termine spline si indica in lingua inglese un sottile righello usato nella progettazione degli scafi dagli ingegneri navali, per raccordare su un piano un insieme di punti (x_i, y_i) , i = 0, ..., n + 1.

Imponendo mediante opportune guide che il righello passi per i punti assegnati, si ottiene una curva che li interpola. Detta y = f(x) l'equazione della curva definita dalla spline, sotto opportune condizioni f(x) può essere approssimativamente descritta da pezzi di polinomi di terzo grado in modo che f(x) e le sue prime due derivate risultino ovunque continue. La derivata terza può presentare discontinuità nei punti x_i . La spline può essere concettualmente rappresentata e generalizzata nel seguente modo. Sia

$$\Delta =: a \equiv x_0 < x_1 < x_2 < \dots < x_n < x_{n+1} \equiv b$$

una decomposizione dell'intervallo [a, b].

Definizione 4.4.1 Si dice funzione Spline di grado $m \geq 1$ relativa alla decomposizione Δ una funzione s(x) soddisfacente le sequenti proprietà:

- 1. s(x) ristretta a ciascun intervallo $[x_i, x_{i+1}]$, i = 0, ..., n, è un polinomio di grado al più m;
- 2. la derivata $s^{(k)}(x)$ è una funzione continua su [a,b] per $k=0,1,\ldots,m-1$.

Si verifica facilmente che l'insieme delle spline di grado assegnato è uno spazio vettoriale. In generale le spline vengono utilizzate in tutte quelle situazioni dove l'approssimazione polinomiale sull'intero intervallo non è soddisfacente. Per m=1 si hanno le cosiddette spline lineari, mentre per m=3 si hanno le spline cubiche.

4.4.2 Costruzione della Spline Cubica Interpolante con la Tecnica dei Momenti

Assegnata la decomposizione:

$$\Delta =: a \equiv x_0 < x_1 < x_2 < \dots < x_n < x_{n+1} \equiv b$$

si vuole determinare una spline cubica s(x) tale che

$$s(x_i) = y_i, i = 0, 1, \dots, n+1.$$
 (4.14)

dove y_i , i = 0, ..., n + 1, sono n + 2 assegnati valori.

Indichiamo con $s_i(x)$ la restrizione della spline nell'intervallo $[x_i, x_{i+1}]$, in cui $s_i''(x)$ è una funzione lineare mentre $s_i^{(3)}(x)$ è una costante, quindi

$$s_i''(x) = s_i''(x_i) + s_i^{(3)}(x_i)(x - x_i)$$
(4.15)

ovvero, posto

$$M_i = s_i''(x_i) \qquad c_i = s_i^{(3)}(x_i)$$

abbiamo

$$s_i''(x) = M_i + c_i(x - x_i). (4.16)$$

Valutando (4.16) in x_{i+1} si ottiene

$$c_i = \frac{M_{i+1} - M_i}{h_i}, \qquad h_i = x_{i+1} - x_i.$$
 (4.17)

Scriviamo lo sviluppo in serie di Taylor di $s_i(x)$ prendendo come punto iniziale x_i :

$$s_i(x) = s_i(x_i) + s_i'(x_i)(x - x_i) + s_i''(x_i)\frac{(x - x_i)^2}{2} + s_i^{(3)}(x_i)\frac{(x - x_i)^3}{6}, \quad (4.18)$$

sostituiamo i valori delle derivate seconda e terza, e calcoliamola in x_{i+1}

$$s_i(x_{i+1}) = s_i(x_i) + s_i'(x_i)(x_{i+1} - x_i) + M_i \frac{(x_{i+1} - x_i)^2}{2} + c_i \frac{(x_{i+1} - x_i)^3}{6}$$

e, imponendo le condizioni di interpolazione e sostituendo il valore dell'ampiezza dei sottointervalli, si ottiene

$$y_{i+1} = y_i + s_i'(x_i)h_i + M_i \frac{h_i^2}{2} + c_i \frac{h_i^3}{6}$$

da cui

$$\frac{y_{i+1} - y_i}{h_i} = s_i'(x_i) + M_i \frac{h_i}{2} + c_i \frac{h_i^2}{6}.$$
 (4.19)

Scriviamo ora lo sviluppo in serie di Taylor di $s_{i-1}(x)$ prendendo come punto iniziale x_i :

$$s_{i-1}(x) = s_{i-1}(x_i) + s'_{i-1}(x_i)(x - x_i) + s''_{i-1}(x_i) \frac{(x - x_i)^2}{2} + s^{(3)}_{i-1}(x_{i-1}) \frac{(x - x_i)^3}{6}$$

e sostituiamo il valori della derivate seconda (che à uguale a M_i in quanto è continua) e della derivata terza (che invece è uguala a c_{i-1} in quanto è discontinua), e poniamo $x = x_{i-1}$ e calcoliamola in x_{i-1} ,

$$s_{i-1}(x_{i-1}) = s_{i-1}(x_i) + s'_{i-1}(x_i)(x_{i-1} - x_i) + M_i \frac{(x_{i-1} - x_i)^2}{2} + c_{i-1} \frac{(x_{i-1} - x_i)^3}{6}.$$

Imponendo le condizioni di interpolazione anche sul nodo x_i in modo tale da assicurare la continuità della spline si ottiene

$$y_{i-1} = y_i - s'_{i-1}(x_i)h_{i-1} + M_i \frac{h_{i-1}^2}{2} - c_{i-1} \frac{h_{i-1}^3}{6}$$

$$\frac{y_{i-1} - y_i}{h_{i-1}} = -s'_{i-1}(x_i) + M_i \frac{h_{i-1}}{2} - c_{i-1} \frac{h_{i-1}^2}{6}.$$
(4.20)

Osserviamo dalla relazione (4.19) che $s'_i(x_i)$ può essere calcolata se sono noti i valori M_i . Di conseguenza la spline è completamente determinata se si conoscono i valori $M_0, M_1, \ldots, M_{n+1}$ (che sono detti momenti). A questo punto imponendo le condizioni di continuità della derivata prima, ovvero

$$s_{i-1}'(x_i) = s_i'(x_i)$$

sommando le equazioni (4.19) e (4.20) le derivate prime si semplificano ricavando l'equazione

$$M_i \frac{h_i + h_{i-1}}{2} - c_{i-1} \frac{h_{i-1}^2}{6} + c_i \frac{h_i^2}{6} = \frac{y_{i+1} - y_i}{h_i} + \frac{y_{i-1} - y_i}{h_{i-1}},$$

sostituendo l'espressione delle derivate terze nei due intervalli

$$c_{i-1} = \frac{M_i - M_{i-1}}{h_{i-1}}, \qquad c_i = \frac{M_{i+1} - M_i}{h_i}$$

$$3M_{i}(h_{i}+h_{i-1})+(M_{i+1}-M_{i})h_{i}-(M_{i}-M_{i-1})h_{i-1}=6\left(\frac{y_{i+1}-y_{i}}{h_{i}}+\frac{y_{i-1}-y_{i}}{h_{i-1}}\right)$$

ottenendo, per i = 1, ..., n, le equazioni

$$h_{i-1}M_{i-1} + 2(h_i + h_{i-1})M_i + h_iM_{i+1} = 6\left(\frac{y_{i+1} - y_i}{h_i} + \frac{y_{i-1} - y_i}{h_{i-1}}\right) \quad (4.21)$$

che rappresentano un sistema lineare di n equazioni nelle n+2 incognite M_0 , M_1, \ldots, M_{n+1} . Per risolvere il problema delle condizioni mancanti ci sono diverse possibili scelte:

1. Il modo piu semplice e quello di imporre che la spline abbia momenti nulli agli estremi dell'intervallo, ovvero

$$M_0 = M_{n+1} = 0$$

ottenendo la cosiddetta spline cubica naturale;

2. In alternativa si possono fissano i valori della derivata prima negli estremi, imponendo che sia

$$s'(x_0) = k_0$$

$$s'(x_{n+1}) = k_{n+1}$$

con k_0 e k_{n+1} valori assegnati: in tal caso la spline interpolante prende il nome di spline cubica completa;

3. Imponendo

$$s'(x_0) = s'(x_{n+1}), s''(x_0) = s''(x_{n+1})$$

si ottiene invece la cosiddetta spline cubica periodica.

Considerando la spline cubica naturale interpolante il sistema (4.21) si scrive:

$$A\mathbf{m} = \mathbf{b}$$

ove
$$A = \begin{bmatrix} 2(h_0 + h_1) & h_1 & & & & \\ h_1 & 2(h_1 + h_2) & h_2 & & & \\ & \ddots & \ddots & \ddots & \\ & & h_{n-2} & 2(h_{n-2} + h_{n-1}) & h_{n-1} \\ & & & h_{n-1} & 2(h_{n-1} + h_n) \end{bmatrix}$$
(4.22)

е

$$\mathbf{m} = \begin{bmatrix} M_1 \\ M_2 \\ M_3 \\ \vdots \\ M_{n-1} \\ M_n \end{bmatrix} \qquad \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ \vdots \\ b_{n-1} \\ b_n \end{bmatrix}$$

con

$$b_i = 6\left(\frac{y_{i+1} - y_i}{h_i} + \frac{y_{i-1} - y_i}{h_{i-1}}\right)$$
 $i = 1, 2, \dots, n.$

4.4.3 Proprietà di Regolarità delle Spline Cubiche

Per ogni $f \in \mathcal{C}^2([a,b])$ definiamo

$$\sigma(f) = \int_{x_0}^{x_{n+1}} [f''(x)]^2 dx$$

che è, in prima approssimazione, una misura del grado di oscillazione di f. Infatti ricordando che:

$$f''(x)(1+(f'(x))^2)^{-3/2}$$

definisce la curvatura della funzione f nel punto x, se |f'(x)| è una quantità sufficientemente piccola rispetto a 1 allora la curvatura è definita approssimativamente da f''(x). Conseguentemente

$$\int_a^b [f''(x)]^2 dx.$$

è una misura approssimata della curvatura totale di f su [a,b].

Sia ora s(x) la spline cubica naturale soddisfacente il problema di interpolazione (4.14) ed f(x) una qualunque funzione con derivata seconda continua su [a, b] soddisfacente anch'essa lo stesso problema di interpolazione. Assegnata cioè la decomposizione:

$$\Delta =: a \equiv x_0 < x_1 < x_2 < \dots < x_n < x_{n+1} \equiv b$$

ed i valori $y_0, y_1, y_2, \dots, y_n, y_{n+1}$ abbiamo

$$s(x_i) = y_i \qquad i = 0, 1, \dots, n+1$$

$$f(x_i) = y_i$$
 $i = 0, 1, \dots, n+1.$

Sia inoltre e(x) = f(x) - s(x). Vale il seguente risultato.

Lemma 4.4.1

$$\int_{x_0}^{x_{n+1}} e''(x)s''(x)dx = e'(x_{n+1})s''(x_{n+1}) - e'(x_0)s''(x_0).$$

Dimostrazione. Osservato che:

$$e''(x)s''(x) = \frac{d}{dx}(e'(x)s''(x)) - e'(x)s^{(3)}(x),$$

si ha

$$\int_{x_0}^{x_{n+1}} e''(x)s''(x)dx = \int_{x_0}^{x_{n+1}} \left[\frac{d}{dx} (e'(x)s''(x)) - e'(x)s^{(3)}(x) \right] dx$$

$$= e'(x_{n+1})s''(x_{n+1}) - e'(x_0)s''(x_0) +$$

$$- \sum_{i=0}^{n} \int_{x_i}^{x_{i+1}} e'(x)s^{(3)}(x)dx.$$

Poichè la derivata terza della spline è costante su ogni sottointervallo $[x_i, x_{i+1}]$, detta c_i tale costante, si può scrivere:

$$\int_{x_0}^{x_{n+1}} e''(x)s''(x)dx = e'(x_{n+1})s''(x_{n+1}) - e'(x_0)s''(x_0) - \sum_{i=0}^n c_i \int_{x_i}^{x_{i+1}} e'(x)dx.$$

La tesi segue poichè per ogni i risulta $e(x_i) = f(x_i) - s(x_i) = 0$. \square

Teorema 4.4.1 Se s(x) è la spline naturale interpolante che soddisfa le condizioni (4.14) allora:

$$\sigma(s) \leq \sigma(f)$$

qualunque sia f di classe $C^2([a,b])$ interpolante gli stessi dati.

Dimostrazione.

$$\sigma(f) = \int_{x_0}^{x_{n+1}} [f''(x)]^2 dx = \int_{x_0}^{x_{n+1}} [f''(x) - s''(x) + s''(x)]^2 dx$$

$$= \int_{x_0}^{x_{n+1}} [e''(x) + s''(x)]^2 dx$$

$$= \int_{x_0}^{x_{n+1}} [e''(x)]^2 dx + \int_{x_0}^{x_{n+1}} [s''(x)]^2 dx + 2 \int_{x_0}^{x_{n+1}} e''(x) s''(x) dx.$$

Poichè s''(x) è una spline lineare possiamo applicare il Lemma 4.4.1 al terzo integrale a secondo membro, ottenendo

$$\sigma(f) = \int_{x_0}^{x_{n+1}} [e''(x)]^2 dx + \int_{x_0}^{x_{n+1}} [s''(x)]^2 dx +$$

$$+2[e'(x_{n+1})s''(x_{n+1}) - e'(x_0)s''(x_0)].$$

Poichè la spline in oggetto è naturale, segue:

$$\sigma(f) = \int_{x_0}^{x_{n+1}} [e''(x)]^2 dx + \sigma(s)$$

e dunque la tesi. \square

Osservazione 1. Se $\sigma(s) = \sigma(f)$ allora e''(x) è identicamente nulla. Pertanto e(x) è un polinomio di primo grado e poichè esso si annulla in almeno due nodi è identicamente nullo. Di conseguenza $s \equiv f$.

Osservazione 2. La tesi del teorema (4.4.1) è verificata anche dalla spline cubica completa. Infatti in questo caso il termine

$$e'(x_{n+1})s''(x_{n+1}) - e'(x_0)s''(x_0) = 0$$

in virtù del fatto che $e'(x_{n+1}) = e'(x_0) = 0$. In definitiva abbiamo provato che la spline cubica naturale è l'unica funzione che risolve il problema di minimo:

$$\min_{f \in \mathcal{C}^{2}([a,b])} \int_{a}^{b} [f''(x)]^{2} dx$$

$$f(x_{i}) = y_{i} \qquad i = 0, 1, \dots, n+1$$

$$f''(a) = f''(b) = 0.$$

Analogamente la spline cubica completa risolve il problema di minimo:

$$\min_{f \in \mathcal{C}^2([a,b])} \int_a^b [f''(x)]^2 dx$$

$$f(x_i) = y_i \qquad i = 0, 1, \dots, n+1$$

$$f'(a) = k_0, \qquad f'(b) = k_{n+1}.$$

4.5 Risoluzione di Sistemi Tridiagonali

In questo paragrafo descriviamo l'algoritmo per risolvere un sistema lineare con matrice dei coefficienti avente struttura come la (4.22) e che viene detta appunto matrice tridiagonale. Sia

$$A = \begin{bmatrix} a_1 & s_1 \\ t_2 & a_2 & s_2 \\ & \ddots & \ddots & \ddots \\ & & t_{n-1} & a_{n-1} & s_{n-1} \\ & & & t_n & a_n \end{bmatrix}, \quad \det A \neq 0.$$

Assumiamo che A ammetta fattorizzazione LU.

$$L = \begin{bmatrix} 1 & & & & & \\ \alpha_2 & 1 & & & & \\ & \ddots & \ddots & & & \\ & & \alpha_{n-1} & 1 & & \\ & & & \alpha_n & 1 \end{bmatrix}, \quad U = \begin{bmatrix} \beta_1 & \lambda_1 & & & & \\ & \beta_2 & \lambda_2 & & & \\ & & \ddots & \ddots & & \\ & & & \beta_{n-1} & \lambda_{n-1} & \\ & & & & \beta_n \end{bmatrix}.$$

Tenendo presente che il prodotto di due matrici bidiagonali, una inferiore e l'altra superiore, è una matrice tridiagonale, per l'effettivo calcolo della matrici L ed U basterà imporre l'uguaglianza tra gli elementi non nulli di A e gli elementi non nulli di LU. Osserviamo innanzitutto che:

$$\beta_1 = a_1,$$

inoltre dal prodotto della *i*-esima riga di L per la colonna i-1 di U otteniamo:

$$t_{i} = (0, \dots, 0, \alpha_{i}, 1, 0, \dots, 0) \cdot \begin{bmatrix} 0 \\ \vdots \\ 0 \\ \lambda_{i-2} \\ \beta_{i-1} \\ 0 \\ \vdots \\ 0 \end{bmatrix} \leftarrow \text{riga } i - 2 \\ \leftarrow \text{riga } i - 1$$

e quindi

$$t_i = \alpha_i \beta_{i-1} \Rightarrow \alpha_i = \frac{t_i}{\beta_{i-1}} \qquad i = 2, \dots, n.$$

Calcolando ora il prodotto della i-esima riga di L per la i-esima colonna di U abbiamo

$$a_{i} = (0, \ldots, 0, \alpha_{i}, 1, 0, \ldots, 0) \cdot \begin{bmatrix} 0 \\ \vdots \\ 0 \\ \lambda_{i-1} \\ \beta_{i} \\ 0 \\ \vdots \\ 0 \end{bmatrix} \leftarrow \text{riga } i - 1$$

cioè

$$a_i = \beta_i + \alpha_i \lambda_{i-1} \Rightarrow \beta_i = a_i - \alpha \lambda_{i-1} \qquad i = 2, \dots, n.$$

Calcoliamo ora il prodotto della *i*-esima riga di L per la (i+1)-esima colonna di U:

$$s_{i} = (0, \dots, 0, \alpha_{i}, 1, 0, \dots, 0) \cdot \begin{bmatrix} 0 \\ \vdots \\ 0 \\ \lambda_{i} \\ \beta_{i+1} \\ 0 \\ \vdots \\ 0 \end{bmatrix} \leftarrow \text{riga } i \\ \leftarrow \text{riga } i + 1$$

quindi

$$s_i = \lambda_i$$
 $i = 1, \ldots, n-1$.

In definitiva la determinazione di L ed U si basa sulle seguenti formule ricorrenti:

$$\beta_1 = a_1$$

$$\beta_i = a_i - \alpha_i s_{i-1} \quad i = 2, \dots, n$$

$$\alpha_i = \frac{t_i}{\beta_{i-1}} \qquad i = 2, \dots, n$$

Risolvendo allora i sistemi $L\mathbf{y} = \mathbf{b}$ ed $U\mathbf{x} = \mathbf{y}$ si ottiene la soluzione che può essere calcolata attraverso le seguenti formule ricorrenti:

$$y_1 = b_1$$

$$y_i = b_i - \alpha_i y_{i-1} \qquad i = 2, \dots, n$$

$$x_n = \frac{y_n}{\beta_n}$$

$$x_i = \frac{1}{\beta_i} (y_i - s_i x_{i+1}) \quad i = n - 1, \dots, 1.$$

4.6 Interpolazione trigonometrica

Quando si devono interpolare funzioni di tipo periodico si possono utilizzare combinazioni lineari di funzioni del tipo $\sin kx$ e $\cos kx$, con $k \in \mathbb{N}$.

Definizione 4.6.1 Una funzione del tipo

$$F(x) = \sum_{j=0}^{m} (\alpha_j \cos jx + \beta_j \sin jx)$$

viene detta polinomio trigonometrico di grado m.

Assegnata una funzione f(x), definita nell'intervallo $[0,2\pi)$ e periodica di periodo 2π vogliamo trovare il polinomio trigonometrico F(x) di grado minimo tale che

$$F(x_k) = f(x_k) = y_k, \qquad k = 0, 1, 2, \dots, n - 1.$$

I nodi x_k sono scelti equidistanti nell'intervallo $[0,2\pi),$ quindi

$$x_k = \frac{2k\pi}{n}, \qquad k = 0, 1, \dots, n - 1.$$
 (4.23)

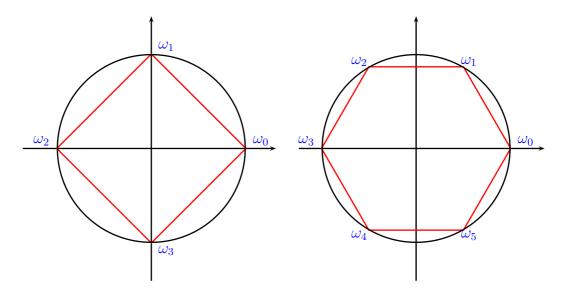
Nel caso in cui la funzione da interpolare g(x) abbia periodo $\tau > 0, \tau \neq 2\pi$, allora è sufficiente porre

$$f(x) = g\left(\frac{\tau x}{2\pi}\right)$$

per ottenere una funzione periodica di periodo 2π . Infatti

$$f(x+2\pi) = g\left(\frac{\tau(x+2\pi)}{2\pi}\right) = g\left(\frac{\tau x}{2\pi} + \tau\right) = g\left(\frac{\tau x}{2\pi}\right) = f(x).$$

Il problema dell'interpolazione trigonometrica nel piano reale può essere ricondotto ad un problema di interpolazione polinomiale nel piano complesso scegliendo come nodi le radici n—esime dell'unità. Geometricamente le radici n—esime dell'unità sono i vertici di un poligono regolare disposti sulla circonferenza di centro nell'origine e raggio unitario, uno dei quali coincide con il punto (1,0). Nella seguente figura sono rappresentate le radici n—esime dell'unità quando n=4 ed n=6.



Indicata con ω_k la $k-{\rm sima}$ radice $n-{\rm esima}$ dell'unità, in forma esponenziale risulta

$$\omega_k = e^{i2\pi k/n}, \qquad k = 0, 1, \dots, n - 1.$$
 (4.24)

Osserviamo che esiste una relazione tra le radici n—esime dell'unità ed i nodi definiti dalla relazione (4.23), infatti

$$\omega_k = e^{2\pi k/n} = e^{\iota x_k} = \cos x_k + \iota \sin x_k, \qquad k = 0, \dots, n - 1.$$

Si devono trovare i coefficienti $z_j \in \mathbb{C}, \ j=0,1,\ldots,n-1,$ del polinomio complesso di grado n-1

$$p(w) = \sum_{j=0}^{n-1} z_j w^j, \qquad w \in \mathbb{C},$$

interpolante i punti (ω_k, y_k) , tale che quindi

$$p(\omega_k) = \sum_{j=0}^{n-1} z_j \omega_k^j = y_k, \qquad k = 0, 1, \dots, n-1.$$

Applicando il metodo dei coefficienti indeterminati, descritto all'inizio del capitolo, i coefficienti del polinomio p(w) sono la soluzione del sistema lineare

$$V\mathbf{z} = \mathbf{y}$$

dove

$$z = \begin{bmatrix} z_1 \\ z_2 \\ \vdots \\ z_{n-1} \end{bmatrix}, \qquad y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_{n-1} \end{bmatrix},$$

mentre V è la matrice di Vandermonde (ad elementi complessi questa volta) che presenta, su ogni riga, le potenze delle radici n—esime dell'unità:

$$V = \begin{bmatrix} 1 & \omega_0 & \omega_0^2 & \omega_0^3 & \dots & \omega_0^{n-1} \\ 1 & \omega_1 & \omega_1^2 & \omega_1^3 & \dots & \omega_1^{n-1} \\ 1 & \omega_2 & \omega_2^2 & \omega_2^3 & \dots & \omega_2^{n-1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & \omega_{n-1} & \omega_{n-1}^2 & \omega_{n-1}^3 & \dots & \omega_{n-1}^{n-1} \end{bmatrix}.$$

In questo caso però la soluzione del sistema risulta molto semplice, infatti, detta V^H la matrice trasporta coniugata di V, ovvero la matrice trasposta i cui elementi sono i coniugati degli elementi di V, risulta

$$V^H V = nI_n$$

dove I_n è la matrice identità di ordine n, quindi la matrice inversa di V è

$$V^{-1} = \frac{1}{n}V^H$$

e, pertanto, il vettore soluzione è

$$\mathbf{z} = \frac{1}{n} V^H \mathbf{y} \tag{4.25}$$

dove

$$V^{H} = \begin{bmatrix} 1 & 1 & 1 & \dots & 1 \\ \omega_{0}^{-1} & \omega_{1}^{-1} & \omega_{2}^{-1} & \dots & \omega_{n-1}^{-1} \\ \omega_{0}^{-2} & \omega_{1}^{-2} & \omega_{2}^{-2} & \dots & \omega_{n-1}^{-2} \\ \omega_{0}^{-3} & \omega_{1}^{-3} & \omega_{2}^{-3} & \dots & \omega_{n-1}^{-3} \\ \vdots & \vdots & \vdots & \vdots \\ \omega_{0}^{-(n-1)} & \omega_{1}^{-(n-1)} & \omega_{2}^{-(n-1)} & \dots & \omega_{n-1}^{-(n-1)} \end{bmatrix}.$$

Nella scrittura degli elementi della matrice V^H si è tenuto conto de fatto che se un numero complesso ha modulo uguale a 1 risulta

$$\overline{z} = z^{-1} \tag{4.26}$$

ovvero il coniugato di z coincide con l'inverso del numero stesso. Ricordiamo che un numero complesso di modulo unitario può essere scritto, utilizzando la formula di Eulero, come

$$z = e^{i\theta} = \cos\theta + i\sin\theta.$$

la relazione (4.26) si deduce da quest'ultima poichè

$$z^{-1} = e^{-i\theta} = \cos \theta - \iota \sin \theta = \overline{z}.$$

Sfruttando l'espressione della matrice V^H si possono scrivere esplicitamente gli elementi del vettore \mathbf{z} :

$$z_j = \frac{1}{n} \sum_{k=0}^{n-1} y_k \omega_k^{-j}.$$
 (4.27)

Se il vettore \mathbf{y} ha componenti reali allora le componenti del vettore z hanno le seguenti proprietà:

- 1. $z_0 \in \mathbb{R}$;
- 2. $\overline{z}_j = z_{n-j}, j = 1, \dots, n-1.$

Infatti dalla (4.27) per j = 0 risulta

$$z_0 = \frac{1}{n} \sum_{k=0}^{n-1} y_k$$

e quindi la prima proprietà segue in modo immediato. Per la seconda

$$z_{n-j} = \frac{1}{n} \sum_{k=0}^{n-1} y_k \omega_k^{-(n-j)} = \frac{1}{n} \sum_{k=0}^{n-1} y_k \omega_k^{-n+j} = \frac{1}{n} \sum_{k=0}^{n-1} y_k \omega_k^j = \overline{z}_j$$

in quanto risulta $\omega_k^n = 1$.

Definizione 4.6.2 L'applicazione (4.27) che al vettore \mathbf{y} associa il vettore \mathbf{z} è detta Trasformata discreta di Fourier, $\mathbf{z} = DFT(\mathbf{y})$.

Definizione 4.6.3 L'applicazione che al vettore \mathbf{z} associa il vettore \mathbf{y} è detta Trasformata discreta inversa di Fourier, $\mathbf{y} = IDFT(\mathbf{z})$:

$$y_k = \sum_{j=0}^{n-1} z_j \omega_k^j.$$

Osserviamo che, sostituendo l'espressione (4.24) di ω_k , si ottengono le espressioni della trasformata discreta di Fourier e della trasformata discreta inversa di Fourier maggiormente note in letteratura:

$$z_j = \frac{1}{n} \sum_{k=0}^{n-1} y_k e^{-2\pi \iota jk/n}, \qquad y_k = \sum_{j=0}^{n-1} z_j e^{2\pi \iota jk/n}.$$

Da questo punto in poi supporremo, per semplicità, che n sia un numero dispari, ovvero

$$n = 2m - 1, \qquad m \in \mathbb{N}$$

e ricaveremo le espressioni esplicite per i coefficienti del polinomio trigonometrico interpolante la funzione o i dati assegnati.

$$y_k = \sum_{j=0}^{2m-2} z_j \omega_k^j = z_0 + \sum_{j=0}^{m-1} z_j \omega_k^j + \sum_{j=m}^{2m-2} z_j \omega_k^j$$

$$= z_0 + \sum_{j=1}^{m-1} z_j \omega_k^j + \sum_{j=m}^{2m-2} \overline{z}_{n-j} \omega_k^j = z_0 + \sum_{j=1}^{m-1} z_j \omega_k^j + \sum_{p=1}^{m-1} \overline{z}_p \omega_k^{n-p}$$

$$= z_0 + \sum_{j=1}^{m-1} z_j \omega_k^j + \sum_{j=1}^{m-1} \overline{z}_j \omega_k^{-j} = z_0 + \sum_{j=1}^{m-1} (z_j \omega_k^j + \overline{z}_j \omega_k^{-j}).$$

Poichè

$$\omega_k^j = e^{\iota j x_k} = \cos j x_k + \iota \sin j x_k$$

risulta

$$y_k = z_0 + \sum_{j=1}^{m-1} \left[(z_j + \overline{z}_j) \cos jx_k + \iota(z_j - \overline{z}_j) \sin jx_k \right].$$

Posto

$$\alpha_j = z_j + \overline{z}_j, \qquad j = 1, \dots, m - 1$$

$$\alpha_0 = 2z_0$$

$$\beta_j = \iota(z_j - \overline{z}_j), \qquad j = 1, \dots, m - 1,$$

e, ed osservato che $\beta_0 = 0$, si ha

$$y_k = \frac{\alpha_0}{2} + \sum_{j=1}^{m-1} (\alpha_j \cos jx_k + \beta_j \sin jx_k)$$

da cui segue che il polinomio trigonometrico cercato ha la forma

$$F_n(x) = \frac{\alpha_0}{2} + \sum_{j=1}^{m-1} (\alpha_j \cos jx + \beta_j \sin jx).$$

Calcoliamo ora le espressioni dei coefficienti di tale polinomio trigonometrico

$$\alpha_j = z_j + \overline{z}_j = \frac{1}{n} \sum_{k=0}^{n-1} y_k (\omega_k^{-j} + \omega_k^j) = \frac{2}{n} \sum_{k=0}^{n-1} y_k \cos jx_k$$

е

$$\beta_j = \iota(z_j - \overline{z}_j) = \frac{\iota}{n} \sum_{k=0}^{n-1} y_k (\omega_k^{-j} - \omega_k^j)$$

$$= \frac{\iota}{n} \sum_{k=0}^{n-1} y_k (-2\iota \sin jx_k) = \frac{2}{n} \sum_{k=0}^{n-1} y_k \sin jx_k.$$

Osservazione 1. Se si considera il caso n=2m allora il polinomio trigonometrico assume la forma

$$F_n(x) = \frac{\alpha_0}{2} + \sum_{j=1}^{m-1} (\alpha_j \cos jx + \beta_j \sin jx) + \frac{\alpha_m}{2} \cos mx.$$

Infatti ricordando che $\overline{z}_{n-j} = z_j$, posto j = m risulta

$$\overline{z}_m = z_m \qquad \Rightarrow \qquad z_m \in \mathbb{R}$$

e inoltre $\beta_m = 0$, mentre

$$\alpha_m = 2z_m = \frac{2}{n} \sum_{k=0}^{n-1} y_k \cos mx_k = \frac{2}{n} \sum_{k=0}^{n-1} y_k \cos k\pi = \frac{2}{n} \sum_{k=0}^{n-1} (-1)^k y_k.$$

Osservazione 2. Un calcolo diretto delle componenti del vettore \mathbf{z} richiede circa n^2 moltiplicazioni e addizioni, tuttavia nel 1965 Cooley e Tukey hanno realizzato un algoritmo che richiede solo $n\log_2 n$ operazioni. Tale algortimo prende il nomedi **Trasformata veloce di Fourier** (FFT ovvero Fast Fourier Transform) ed è stato considerato come uno dei dieci più importanti algortimi del XX secolo. Una descrizione di tale metodo richiederebbe un approfondimento delle tematiche descritte finora ed esula dagli scopi del corso.

Nella Figura 4.11 è raffigurato il polinomio trigonometrico interpolante la funzione

$$f(x) = x$$

resa periodica d
 periodo 2π con n=12 punti. L'esempio dimostra che in realtà è possibile interpolare qualsiasi funzione purchè questa sia resa periodica.

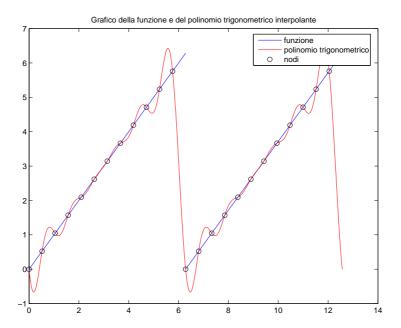


Figura 4.11: Interpolazione trigonometrica.

4.6.1 Il fenomeno di Aliasing e i filtri digitali

In questo paragrafo descriveremo in modo molto sintetico l'applicazione dell'interpolazione trigonometrica alla definizione di filtri digitali. Prima però descriviamo qualche aspetto fisico di tale tecnica. Se una funzione ha periodo T significa che essa descrive un fenomeno che si ripete ogni tempo T e si definisce frequenza

$$\nu = \frac{1}{T}$$

che indica il numero di volte che il fenomeno si verifica nell'unità di tempo. La funzione

$$f(x) = \sin jx$$

ha periodo $2\pi/j$ e frequenza $j/2\pi$ pertanto calcolare il polinomio trigonometrico significa approssimare la funzione con una somma di funzioni periodiche aventi frequenza che aumenta con l'aumento di j. In modo del tutto generale possiamo affermare che la funzione viene approssimata con la somma di funzioni di bassa frequenza. Il termine

$$\alpha_1 \sin x + \beta_1 \cos x$$

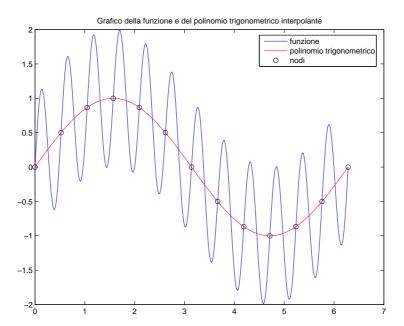


Figura 4.12: Aliasing: interpolazione della funzione $f(x) = \sin x + \sin 20x$ con n = 12.

viene detto armonica fondamentale, mentre il j-esimo addendo del polinomio

$$\alpha_i \sin jx + \beta_i \cos jx$$

viene detto j—esima armonica. Tale terminologia è mutuata dall'acustica. Se proviamo a tracciare il polinomio interpolante la funzione

$$f(x) = \sin x + \sin 20x$$

con n=12 otteniamo un'approssimazione non molto buona (Figura 4.12). Il motivo di tale comportamento è che la funzione interpolata ha una componente (il secondo addendo) che ha una frequenza superiore rispetto ale armoniche utilizzate nel polinomio trigonometrico. Per ottenere un risultato migliore è necessario utilizzare un numero di punti decisamente superiore (si veda la Figura 4.13 ottenuta con n=30 e Figura 4.14 per la rappresentazione dell'errore commesso). Tale fenomeno viene detto Aliasing ed indica quanto delicato sia il problema della scelta del numero di punti nell'approssimazione di una funzione (processo che prende il nome di campionamento.

Un esempio di aliasing è l'apparente inversione del senso di rotazione di una

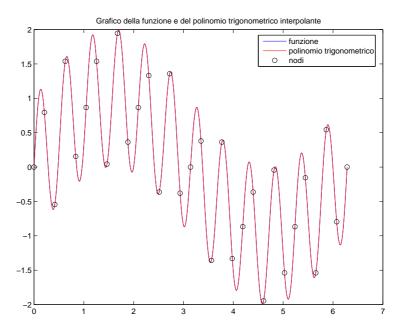


Figura 4.13: Interpolazione della funzione $f(x) = \sin x + \sin 20x$ con n = 30.

ruota dotata di raggi, infatti una volta raggiunta una certa velocità il cervello non è in grado di campionare in modo accurato l'immagine in movimento e di conseguenza elabora (interpola) in modo errato ciò che viene percepito dagli occhi. Una tipica applicazione delle trasformate di Laplace è il filtraggio digitale di un segnale. Un segnale è una funzione che codifica una determinata informazione. I valori y_k possono essere considerati come i dati campionati di un determinato segnale che vengono trasmessi attraverso un canale di trasmissione per consentire, una volta ricevuti, la ricostruzione del segnale attraverso un procedimento di interpolazione. Nella Figura 4.15 è stato riportato il grafico della funzione

$$s(x) = \sin\frac{x}{2}(x - 1.2)\cos(3x) + \frac{1}{x+1}\cos(1+x^2), \qquad x \in [0, 2\pi]$$

supponendo che esso rappresenti il segnale da trasmettere, reso periodico di periodo 2π . Nella Figura 4.16 viene riportato il grafico della funzione f(x) = s(x) + r(x), dove r(x) rappresenta il rumore introdotto nella trasmissione del segnale, uguale a

$$r(x) = 0.1\sin(80x) + 2\sin(23x)\cos(31x)\sin(1.3 - 19x), \qquad x \in [0, 2\pi].$$

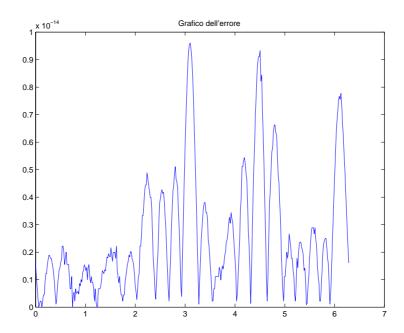


Figura 4.14: Errore nell'interpolazione della funzione $f(x) = \sin x + \sin 20x$ con n = 30.

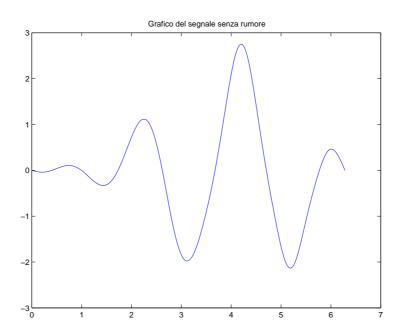


Figura 4.15: Grafico del segnale s(x).

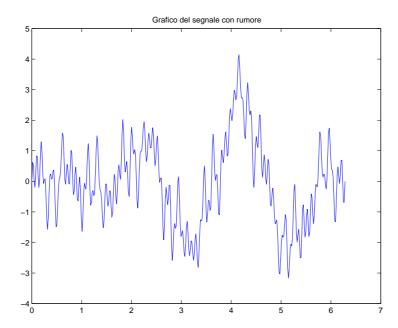


Figura 4.16: Grafico del segnale e del rumore s(x) + r(x).

A partire dal campionamento della funzione f(x) effettuato su 512 punti è possibile, usando la trasformata discreta di Fourier, recuperare una buona parte dell'informazione. Una volta calcolato il polinomio trigonometrico $F_m(x)$ e fermando il calcolo al valore m=8 si ottiene un segnale ricostruito che, nella Figura 4.17, viene confrontato con la funzione di partenza s(x). In Figura 4.18 viene mostrata la differenza tra i due segnali. Nella Figura 4.19 viene mostrato l'approssimazione del segnale usando solo 5 armoniche, osservando che il risultato risulta essere ancora soddisfacente, mentre nella Figura 4.20 viene mostrata la differenza tra il segnale e la sua approssimazione.

Nel seguito viene riportato il codice per utilizzare l'interpolazione trigonometrica come filtro digitale.

```
clear
format long e
s = input('Inserire il segnale come una stringa ');
r = input('Inserire il rumore come una stringa ');
n = input('Inserire il valore n ');
m0 = input('Inserire il numero di armoniche ');
```

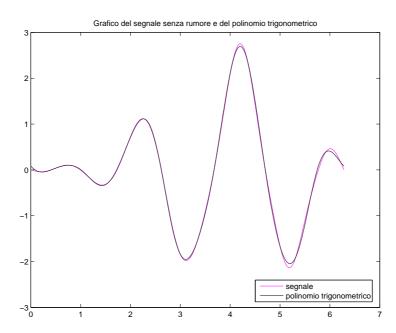


Figura 4.17: Filtro digitale utilizzando 8 armoniche.

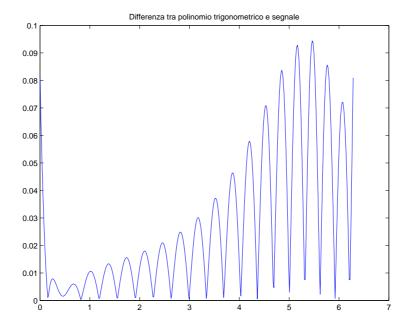


Figura 4.18: Errore nella ricostruzione del segnale usando 8 armoniche.

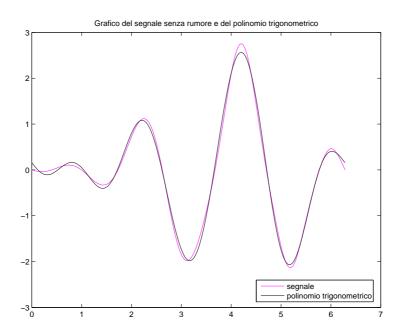


Figura 4.19: Filtro digitale utilizzando 5 armoniche.

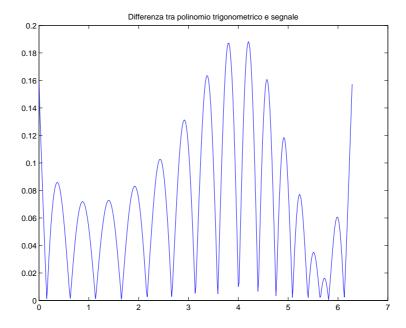


Figura 4.20: Errore nella ricostruzione del segnale usando 5 armoniche.

```
if rem(n,2)==0
    m = n/2;
else
    m = (n+1)/2;
end
f = inline(s);
noise = inline(r);
xall = 2*pi*[0:n]/n;
x = xall(1:end-1);
yall_f = feval(f,xall);
yall_r = feval(noise,xall);
yall = yall_f+yall_r;
y = yall(1:end-1);
alfa0 = sum(y)/n;
for j=1:m-1
    alfa(j)=2/n*sum(y.*cos(j*x));
    beta(j)=2/n*sum(y.*sin(j*x));
end
beta(m) = 0;
if rem(n,2)==0
    alfa(m) = 0;
    for k=0:n-1
        alfa(m) = alfa(m) + (-1)^k*y(k+1);
    alfa(m) = 1/n*alfa(m);
else
    alfa(m) = 0;
end
xx = linspace(0,2*pi,400);
yy_f = feval(f,xx);
yy_r = feval(noise,xx);
yy = yy_f + yy_r;
y_p = alfa0*ones(size(xx));
for k=1:length(xx)
    for j=1:m0
        y_p(k)=y_p(k)+alfa(j)*cos(j*xx(k))+beta(j)*sin(j*xx(k));
    end
\quad \text{end} \quad
```

```
figure(1)
plot(xx,yy_f,'b')
title('Grafico del segnale senza rumore')
figure(2)
plot(xx,yy,'b')
title('Grafico del segnale con rumore')
figure(3)
plot(xx,yy_f,'m',xx,y_p,'k')
title('Grafico del segnale senza rumore e del polinomio trigonometrico ')
legend('segnale','polinomio trigonometrico','Location','SouthEast')
figure(4)
plot(xx,abs(yy_f-y_p))
title('Differenza tra polinomio trigonometrico e segnale ');
```

Capitolo 5

Formule di Quadratura

5.1 Formule di Quadratura di Tipo Interpolatorio

Siano assegnati due valori a, b, con a < b, ed una funzione f integrabile sull'intervallo (a, b). Il problema che ci poniamo è quello di costruire degli algoritmi numerici che ci permettano di valutare, con errore misurabile, il numero

$$I(f) = \int_{a}^{b} f(x)dx.$$

Diversi sono i motivi che possono portare alla richiesta di un algoritmo numerico per questi problemi.

Per esempio pur essendo in grado di calcolare una primitiva della funzione f, questa risulta così complicata da preferire un approccio di tipo numerico. Non è da trascurare poi il fatto che il coinvolgimento di funzioni, elementari e non, nella primitiva e la loro valutazione negli estremi a e b comporta comunque un'approssimazione dei risultati. Un'altra eventualità è che f sia nota solo in un numero finito di punti o comunque può essere valutata in ogni valore dell'argomento solo attraverso una routine. In questi casi l'approccio analitico non è neanche da prendere in considerazione.

Supponiamo dunque di conoscere la funzione f(x) nei punti distinti x_0, x_1, \ldots, x_n prefissati o scelti da noi, ed esaminiamo la costruzione di formule del tipo

$$\sum_{k=0}^{n} w_k f(x_k) \tag{5.1}$$

che approssimi realizzare I(f).

Formule di tipo (5.1) si dicono di quadratura, i numeri reali x_0, x_1, \ldots, x_n e w_0, \ldots, w_n si chiamano rispettivamente nodi e pesi della formula di quadratura.

Il modo più semplice ed immediato per costruire formule di tipo (5.1) è quello di sostituire la funzione integranda f(x) con il polinomio di Lagrange $L_n(x)$ interpolante f(x) nei nodi x_i , i = 0, ..., n. Posto infatti

$$f(x) = L_n(x) + e(x)$$

dove e(x) è la funzione errore, abbiamo:

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} [L_{n}(x) + e(x)]dx = \int_{a}^{b} L_{n}(x)dx + \int_{a}^{b} e(x)dx$$
$$= \int_{a}^{b} \sum_{k=0}^{n} l_{nk}(x)f(x_{k})dx + \int_{a}^{b} e(x)dx$$
$$= \sum_{k=0}^{n} \left(\int_{a}^{b} l_{nk}(x)dx \right) f(x_{k}) + \int_{a}^{b} e(x)dx.$$

Ponendo

$$w_k = \int_a^b l_{nk}(x)dx \qquad k = 0, 1, \dots, n$$
 (5.2)

e

$$R_{n+1}(f) = \int_{a}^{b} e(x)dx$$
 (5.3)

otteniamo

$$I(f) \simeq \sum_{k=0}^{n} w_k f(x_k)$$

con un errore stabilito dalla relazione (5.3). Le formule di quadratura con pesi definiti dalle formule (5.2) si dicono interpolatorie. La quantità $R_{n+1}(f)$ prende il nome di Resto della formula di quadratura. Un utile concetto per misurare il grado di accuratezza con cui una formula di quadratura, interpolatoria o meno, approssima un integrale è il seguente.

Definizione 5.1.1 Una formula di quadratura ha grado di precisione q se fornisce il valore esatto dell'integrale quando la funzione integranda è un

qualunque polinomio di grado al più q ed inoltre esiste un polinomio di grado q+1 tale che l'errore è diverso da zero.

È evidente da questa definizione che ogni formula di tipo interpolatorio con nodi x_0, x_1, \ldots, x_n ha grado di precisione almeno n. Infatti applicando una formula di quadratura costruita su n+1 nodi al polinomio $p_n(x)$, di grado n si ottiene:

$$\int_{a}^{b} p_{n}(x)dx = \sum_{i=0}^{n} w_{i}p_{n}(x_{i}) + R_{n+1}(f)$$

е

$$R_{n+1}(f) = \int_{a}^{b} \omega_{n+1}(x) \frac{p_n^{(n+1)}(x)}{(n+1)!} dx \equiv 0$$

ovvero la formula fornisce il risultato esatto dell'integrale, quindi $q \geq n$.

5.2 Formule di Newton-Cotes

Suddividiamo l'intervallo [a, b] in n sottointervalli di ampiezza h, con

$$h = \frac{b - a}{n}$$

e definiamo i nodi

$$x_i = a + ih \qquad i = 0, 1, \dots, n.$$

La formula di quadratura interpolatoria costruita su tali nodi, cioè

$$\int_{a}^{b} f(x)dx = \sum_{i=0}^{n} w_{i}f(x_{i}) + R_{n+1}(f)$$

è detta Formula di Newton-Cotes.

Una proprietà di cui godono i pesi delle formule di Newton-Cotes è la cosiddetta proprietà di simmetria. Infatti poichè i nodi sono a due a due simmetrici rispetto al punto medio c dell'intervallo [a,b], cioè $c=(x_i+x_{n-i})/2$, per ogni i, tale proprietà si ripercuote sui pesi che infatti sono a due a due uguali, cioè $w_i=w_{n-i}$, per ogni i. Descriviamo ora due esempi di formule di Newton-Cotes.

5.2.1 Formula dei Trapezi

Siano $x_0 = a, x_1 = b e h = b - a.$

$$T_2 = w_0 f(x_0) + w_1 f(x_1)$$

$$w_0 = \int_a^b l_{1,0}(x) dx = \int_a^b \frac{x - x_1}{x_0 - x_1} dx = \int_a^b \frac{x - b}{a - b} dx$$

$$= \frac{1}{a - b} \left[\frac{(x - b)^2}{2} \right]_{x = a}^{x = b} = \frac{h}{2}.$$

Poichè i nodi scelti sono simmetrici rispetto al punto medio c = (a + b)/2 è

$$w_1 = w_0 = \frac{h}{2}.$$

Otteniamo dunque la formula

$$T_2 = \frac{h}{2} [f(a) + f(b)].$$

che viene detta Formula dei Trapezi. Per quanto riguarda il resto abbiamo

$$R_2(f) = \frac{1}{2} \int_a^b (x - a)(x - b) f''(\xi_x) dx.$$

Prima di vedere come tale espressione può essere manipolata dimostriamo il seguente teorema che è noto come teorema della media generalizzato.

Teorema 5.2.1 Siano $f, g : [a, b] \to \mathbb{R}$, funzioni continue con g(x) a segno costante e $g(x) \neq 0$ per ogni $x \in]a, b[$. Allora

$$\int_{a}^{b} f(x)g(x)dx = f(\xi) \int_{a}^{b} g(x)dx, \qquad \xi \in [a, b]. \ \Box$$

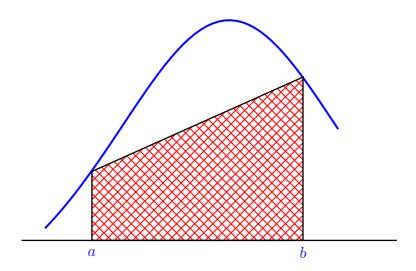
Poichè la funzione (x-a)(x-b) è a segno costante segue:

$$R_2(f) = \frac{1}{2}f''(\eta) \int_a^b (x - a)(x - b) dx$$

posto x = a + ht otteniamo

$$R_2(f) = \frac{1}{2}f''(\eta)h^3 \int_0^1 t(t-1)dt = -\frac{1}{12}h^3f''(\eta).$$

L'interpretazione geometrica della formula del trapezio è riassunta nella seguente figura, l'area tratteggiata (ovvero l'integrale della funzione viene approssimato attraverso l'area del trapezio che ha come basi i valori della funzione in a e b e come altezza l'intervallo [a,b]).



5.2.2 Formula di Simpson

Siano $x_0 = a$, $x_2 = b$ mentre poniamo $x_1 = c$, punto medio dell'intervallo [a, b]. Allora

$$S_3 = w_0 f(a) + w_1 f(c) + w_2 f(b).$$

Posto

$$h = \frac{b - a}{2}$$

abbiamo

$$w_0 = \int_a^b l_{2,0}(x)dx = \int_a^b \frac{(x-c)(x-b)}{(a-c)(a-b)}dx.$$

Effettuando il cambio di variabile x = c + ht è facile calcolare quest'ultimo integrale, infatti

$$x = a \Rightarrow a = c + ht \Rightarrow a - c = ht \Rightarrow -h = ht \Rightarrow t = -1$$

е

$$x = b \implies b = c + ht \implies b - c = ht \implies h = ht \implies t = 1.$$

Inoltre a - c = -h e a - b = -2h mentre

$$x-c = c+ht-c = ht$$
, $x-b = c+ht-b = c-b+ht = -h+ht = h(t-1)$,

ed il differenziale dx = hdt cosicchè

$$w_0 = \int_a^b \frac{(x-c)(x-b)}{(a-c)(a-b)} dx = \int_{-1}^1 \frac{hth(t-1)}{(-h)(-2h)} h dt$$
$$= \frac{h}{2} \int_{-1}^1 (t^2 - t) dt = \frac{h}{2} \int_{-1}^1 t^2 dt = \frac{h}{2} \left[\frac{t^3}{3} \right]_{-1}^1 = \frac{h}{3}.$$

Per la proprietà di simmetria è anche

$$w_2 = w_0 = \frac{h}{3}$$

mentre possiamo calcolare w_1 senza ricorrere alla definizione. Infatti possiamo notare che la formula deve fornire il valore esatto dell'integrale quando la funzione è costante nell'intervallo [a,b], quindi possiamo imporre che, prendendo f(x) = 1 in [a,b], sia

$$\int_{a}^{b} dx = b - a = \frac{h}{3}(f(a) + f(b)) + w_1 f(c)$$

da cui segue

$$w_1 = b - a - \frac{2}{3}h = 2h - \frac{2}{3}h = \frac{4}{3}h.$$

Dunque

$$S_3 = \frac{h}{3} [f(a) + 4f(c) + f(b)].$$

Questa formula prende il nome di Formula di Simpson. Per quanto riguarda l'errore si può dimostrare, e qui ne omettiamo la prova, che vale la seguente relazione

$$R_3(f) = -h^5 \frac{f^{(4)}(\sigma)}{90}$$
 $\sigma \in (a, b),$

che assicura che la formula ha grado di precisione 3.

5.3 Formule di Quadratura Composte

Come abbiamo già avuto modo di vedere le formule di quadratura interpolatorie vengono costruite approssimando su tutto l'intervallo di integrazione la funzione integranda con un unico polinomio, quello interpolante la funzione sui nodi scelti. Per formule convergenti la precisione desiderata si ottiene prendendo n sufficientemente grande. In tal modo comunque, per ogni fissato n, bisogna costruire la corrispondente formula di quadratura. Una strategia alternativa che ha il pregio di evitare la costruzione di una nuova formula di quadratura, e che spesso produce risultati più apprezzabili, è quella delle formule composte. Infatti scelta una formula di quadratura l'intervallo di integrazione (a, b) viene suddiviso in N sottointervalli di ampiezza h,

$$h = \frac{b-a}{N} \tag{5.4}$$

sicchè

$$\int_{a}^{b} f(x)dx = \sum_{i=0}^{N-1} \int_{x_{i}}^{x_{i+1}} f(x)dx$$

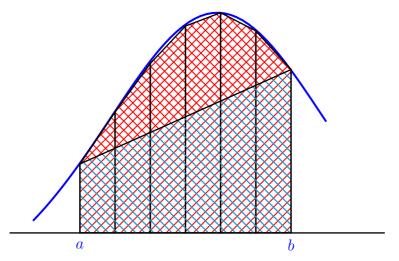
dove i punti x_i sono:

$$x_i = a + ih \qquad i = 0, \dots, N \tag{5.5}$$

quindi la formula di quadratura viene applicata ad ognuno degli intervalli $[x_i, x_{i+1}]$. Il grado di precisione della formula di quadratura composta coincide con il grado di precisione della formula da cui deriva. Descriviamo ora la Formula dei Trapezi Composta.

5.3.1 Formula dei Trapezi Composta

Per quanto visto in precedenza suddividiamo l'intervallo [a, b] in N sottointervalli, ognuno di ampiezza data da h, come in (5.4), e con i nodi x_i definiti in (5.5). Applichiamo quindi in ciascuno degli N intervalli $[x_i, x_{i+1}]$ la formula dei trapezi. Nella seguente figura sono evidenziate le aree che approssimano l'integrale utilizzando la formula dei trapezi semplice e quella composta.



Applicando la formula dei trapezi a ciascun sottointervallo si ottiene

$$\int_{a}^{b} f(x)dx = \sum_{i=0}^{N-1} \int_{x_{i}}^{x_{i+1}} f(x)dx = \sum_{i=0}^{N-1} \left[\frac{h}{2} \left(f(x_{i}) + f(x_{i+1}) \right) - \frac{1}{12} h^{3} f''(\eta_{i}) \right]$$

con $\eta_i \in (x_i, x_{i+1})$. Scrivendo diversamente la stessa espressione

$$\int_{a}^{b} f(x)dx = \frac{h}{2} (f(x_0) + f(x_N)) + h \sum_{i=1}^{N-1} f(x_i) - \frac{1}{12} h^3 \sum_{i=0}^{N-1} f''(\eta_i)$$
$$= \frac{h}{2} (f(x_0) + f(x_N)) + h \sum_{i=1}^{N-1} f(x_i) - \frac{1}{12} h^3 N f''(\eta)$$

dove $\eta \in (a, b)$. L'esistenza di tale punto η è garantito dal cosiddetto Teorema della media nel discreto applicato a f''(x), che stabilisce che se g(x) è una funzione continua in un intervallo [a, b] e $\eta_i \in [a, b]$ i = 1, N, sono N punti distinti, allora esiste un punto $\eta \in (a, b)$ tale che

$$\sum_{i=1}^{N} g(\eta_i) = Ng(\eta).$$

Dunque la formula dei trapezi composta è data da:

$$T_C(h) = \frac{h}{2} (f(x_0) + f(x_N)) + h \sum_{i=1}^{N-1} f(x_i)$$

con resto

$$R_T = -\frac{1}{12}h^3 N f''(\eta) = -\frac{1}{12}\frac{(b-a)^3}{N^3} N f''(\eta) = -\frac{1}{12}\frac{(b-a)^3}{N^2} f''(\eta).$$

Quest'ultima formula può essere utile per ottenere a priori una suddivisione dell'intervallo [a,b] in un numero di intervalli che permetta un errore non superiore ad una prefissata tolleranza. Infatti

$$|R_T| \le \frac{1}{12} \frac{(b-a)^3}{N^2} M, \qquad M = \max_{x \in [a,b]} |f''(x)|.$$

Imponendo che $|R_T| \leq \varepsilon$, precisione prefissata, segue

$$N_{\varepsilon} \ge \sqrt{\frac{(b-a)^3 M}{12\varepsilon}}. (5.6)$$

Tuttavia questo numero spesso risulta una stima eccessiva a causa della maggiorazione della derivata seconda tramite M.

Esempio 5.3.1 Determinare il numero di intervalli cui suddividere l'intervallo di integrazione per approssimare

$$\int_{1}^{2} \log x \ dx$$

con la formula dei trapezi composta con un errore inferiore a $\varepsilon = 10^{-4}$.

La derivata seconda della funzione integranda è

$$f''(x) = -\frac{1}{x^2}$$

quindi il valore di M è 1. Dalla relazione (5.6) segue che

$$N_{\varepsilon} \ge \sqrt{\frac{1}{12\varepsilon}} = 29.$$

5.3.2 Formula di Simpson Composta

Per ottenere la formula di Simpson composta, si procede esattamente come per la formula dei trapezi composta. Suddividiamo [a,b] in N intervalli di ampiezza h, con N numero pari. Allora

$$\int_{a}^{b} f(x)dx = \sum_{i=0}^{\frac{N}{2}-1} \int_{x_{2i}}^{x_{2i+2}} f(x)dx$$

$$= \sum_{i=0}^{\frac{N}{2}-1} \left[\frac{h}{3} \left(f(x_{2i}) + 4f(x_{2i+1}) + f(x_{2i+2}) \right) - \frac{h^{5}}{90} f^{(4)}(\eta_{i}) \right]$$

$$= \frac{h}{3} \sum_{i=0}^{\frac{N}{2}-1} \left[f(x_{2i}) + 4f(x_{2i+1}) + f(x_{2i+2}) \right] - \frac{h^{5}N}{180} f^{(4)}(\eta)$$

dove $\eta_i \in (x_i, x_{i+1})$ e $\eta \in (a, b)$.

La formula di Simpson composta è dunque

$$S_C(h) = \frac{h}{3} \sum_{i=0}^{\frac{n}{2}-1} \left[f(x_{2i}) + 4f(x_{2i+1}) + f(x_{2i+2}) \right]$$
$$= \frac{h}{3} \left[f(x_0) + f(x_n) + 2 \sum_{i=1}^{\frac{n}{2}-1} f(x_{2i}) + 4 \sum_{i=1}^{\frac{n}{2}-1} f(x_{2i+1}) \right]$$

mentre la formula dell'errore è

$$R_S = -\frac{(b-a)^5}{180N^4} f^{(4)}(\eta)$$

Anche quest'ultima formula talvolta può essere utile per ottenere a priori una suddivisione dell'intervallo [a,b] in un numero di intervalli che permetta un errore non superiore ad una prefissata tolleranza. Infatti

$$|R_S| \le \frac{1}{180} \frac{(b-a)^5}{N^4} M, \qquad M = \max_{x \in [a,b]} |f^{(iv)}(x)|.$$

Imponendo che $|R_S| \leq \varepsilon$ segue

$$N_{\varepsilon} \ge \sqrt[4]{\frac{(b-a)^5 M}{180\varepsilon}}. (5.7)$$

Esempio 5.3.2 Risolvere il problema descritto nell'esempio 5.3.1 applicando la formula di Simpson composta.

La derivata quarta della funzione integranda è

$$f^{\mathrm{iv}}(x) = -\frac{6}{x^4}$$

quindi è maggiorata da M=6. Dalla relazione (5.7) segue che

$$N_{\varepsilon} \ge \sqrt[4]{\frac{6}{180\varepsilon}} > 4,$$

quindi $N_{\varepsilon} \geq 6$.

5.3.3 La formula del punto di mezzo

Sia c il punto medio dell'intervallo [a, b]. Sviluppiamo f(x) in serie di Taylor prendendo c come punto iniziale:

$$f(x) = f(c) + f'(c)(x - c) + \frac{f''(\xi_x)}{2}(x - c)^2,$$
 $\xi_x \in [a, b].$

Integrando membro a membro

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} f(c)dx + f'(c) \int_{a}^{b} (x - c)dx + \int_{a}^{b} \frac{f''(\xi_{x})}{2} (x - c)^{2} dx$$
$$= (b - a)f(c) + \int_{a}^{b} \frac{f''(\xi_{x})}{2} (x - c)^{2} dx.$$

Poichè la funzione x-c è dispari rispetto a c il suo integrale nell'intervallo [a,b] è nullo. La formula

$$\int_{a}^{b} f(x)dx \simeq (b-a)f(c)$$

prende appunto il nome di formula del punto di mezzo (o di midpoint). Per quanto riguarda l'errore abbiamo

$$R(f) = \int_{a}^{b} \frac{f''(\xi_{x})}{2} (x - c)^{2} dx$$
$$= \frac{f''(\xi)}{2} \int_{a}^{b} (x - c)^{2} dx.$$

In questo caso la funzione $(x-c)^2$ è a segno costante quindi è stato possibile applicare il teorema 5.2.1. Calcoliamo ora l'integrale

$$\int_{a}^{b} (x-c)^{2} dx = 2 \int_{c}^{b} (x-c)^{2} = \frac{2}{3} \left[(x-c)^{3} \right]_{c}^{b} = \frac{h^{3}}{12}$$

avendo posto h=b-a. L'espressione del resto di tale formula è quindi

$$R(f) = \frac{h^3}{24}f''(\xi).$$

Osserviamo che la formula ha grado di precisione 1, come quella dei trapezi, però richiede il calcolo della funzione solo nel punto medio dell'intervallo mentre la formula dei trapezi necessita di due valutazioni funzionali.

5.3.4 Formula del punto di mezzo composta

Anche in questo caso suddividiamo l'intervallo [a,b] in N intervallini di ampiezza h, con N pari. Allora

$$\int_{a}^{b} f(x)dx = \sum_{i=0}^{\frac{N}{2}-1} \int_{x_{2i}}^{x_{2i+2}} f(x)dx$$

$$= \sum_{i=0}^{\frac{N}{2}-1} \left[2hf(x_{2i+1}) + \frac{(2h)^{3}}{24} f''(\eta_{i}) \right]$$

$$= 2h \sum_{i=0}^{\frac{N}{2}-1} f(x_{2i+1}) + \frac{Nh^{3}}{6} f''(\eta)$$

$$= 2h \sum_{i=0}^{\frac{N}{2}-1} f(x_{2i+1}) + \frac{(b-a)^{3}}{6N^{2}} f''(\eta)$$

dove $\eta_i \in (x_{2i}, x_{2i+2})$ e $\eta \in (a, b)$. La formula del punto di mezzo composta è dunque

$$M_C(h) = 2h \sum_{i=0}^{\frac{N}{2}-1} f(x_{2i+1})$$

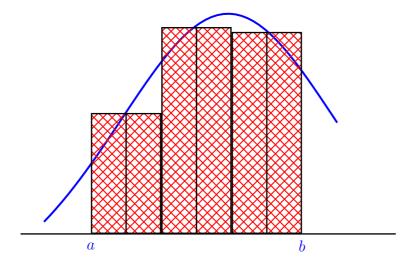


Figura 5.1: Formula del Punto di Mezzo Composta

mentre il resto è

$$R_M = \frac{(b-a)^3}{6N^2} f''(\eta). \tag{5.8}$$

Se ε è la tolleranza fissata risulta

$$|R_M| \le \frac{1}{6} \frac{(b-a)^3}{N^2} M, \qquad M = \max_{x \in [a,b]} |f''(x)|.$$

Imponendo che $|R_T| \leq \varepsilon$, precisione prefissata, segue

$$N_{\varepsilon} \ge \sqrt{\frac{(b-a)^3 M}{6\varepsilon}}. (5.9)$$

Nella Figura 5.1 sono evidenziate le aree che approssimano l'integrale utilizzando la formula del punto di mezzo composta.

Esempio 5.3.3 Risolvere il problema descritto nell'esempio 5.3.1 applicando la formula di Simpson composta.

La derivata seconda della funzione integranda è maggiorata da M=1. Da (5.9) risulta

$$N_{\varepsilon} \ge \sqrt{\frac{1}{6\varepsilon}} > 40.$$

Capitolo 6

Metodi numerici per equazioni differenziali

6.1 Derivazione numerica

La risoluzione numerica di problemi differenziali (come equazioni differenziali ordinarie ed equazioni alle derivate parziali) è uno dei più importanti argomenti del Calcolo Numerico in quanto spesso non sono trattabili dal punto di vista analitico e contemporanemente costituiscono lo strumento più efficace per la descrizione di problemi fisici, chimici e, in generale, delle scienze applicate. La risoluzione numerica di questi problemi passa anche attraverso il processo di discretizzazione delle derivate (totali o parziali), ovvero la loro approssimazione, che appunto è detta Derivazione numerica. Nei prossimi paragrafi capitolo affronteremo il problema relativo all'approssimazione delle derivate prima e seconda di una funzione in un punto del dominio utilizzando opportune combinazioni lineari tra i valori assunti dalla funzione in tale punto e in altri punti ad esso adiacenti. Tali approssimazioni saranno utilizzate anche per derivare semplici metodi per l'approssimazione della soluzione numerica di equazioni differenziali del primo ordine.

6.1.1 Approssimazione discreta delle derivate

Come detto in precedenza supponiamo che $f \in C^k([a, b])$ e suddividiamo l'intervallo di variabilità di t in sottointervalli di ampiezza h. Consideriamo tre punti consecutivi appartenenti a tale reticolazione, rispettivamente t_{n-1} ,

 t_n e t_{n+1} tali che

$$t_{n-1} = t_n - h,$$
 $t_{n+1} = t_n + h.$

Scriviamo lo sviluppo in serie di Taylor di $f(t_{n+1})$ prendendo come punto iniziale t_n :

$$f(t_{n+1}) = f(t_n) + hf'(t_n) + \frac{h^2}{2}f''(t_n) + \frac{h^3}{6}f'''(t_n) + \frac{h^4}{24}f^{iv}(\xi_n), \ \xi_n \in [t_n, t_{n+1}]$$

e procediamo in modo analogo per $f(t_{n-1})$:

$$f(t_{n-1}) = f(t_n) - hf'(t_n) + \frac{h^2}{2}f''(t_n) - \frac{h^3}{6}f'''(t_n) + \frac{h^4}{24}f^{iv}(\eta_n), \ \eta_n \in [t_{n-1}, t_n].$$

Sommiamo ora le due espressioni

$$f(t_{n+1}) + f(t_{n-1}) = 2f(t_n) + h^2 f''(t_n) + \frac{h^4}{24} \left[f^{iv}(\xi_n) + f^{iv}(\eta_n) \right]$$

ricavando

$$f''(t_n) = \frac{f(t_{n+1}) - 2f(t_n) + f(t_{n-1})}{h^2} - \frac{h^2}{24} \left[f^{iv}(\xi_n) + f^{iv}(\eta_n) \right]$$

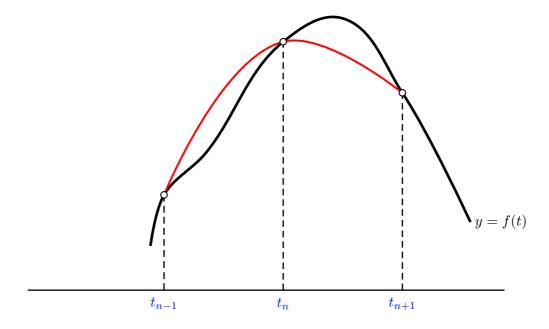
e, trascurando l'ultimo termine, l'approssimazione della derivata seconda è:

$$f''(t_n) \simeq \frac{f(t_{n+1}) - 2f(t_n) + f(t_{n-1})}{h^2}$$
(6.1)

mentre si può provare che l'errore vale:

$$E(f''(t_n)) = -\frac{h^2}{12}f^{iv}(\xi), \qquad \xi \in [t_{n-1}, t_{n+1}].$$

Nel seguente grafico viene evidenziata l'interpretazione geometrica della formula appena ricavata.



Infatti l'approssimazione appena trovata coincide con il valore della derivata seconda della parabola passante per i punti $(t_{n-1}, f(t_{n-1})), (t_n, f(t_n))$ e $(t_{n+1}, f(t_{n+1}))$.

Infatti scrivendo l'equazione di tale parabola come:

$$p(t) = a(t - t_n)(t - t_{n-1}) + b(t - t_{n-1}) + c$$

$$c = f(t_{n-1})$$

$$b = \frac{f(t_n) - f(t_{n-1})}{h}$$

$$a = \frac{f(t_{n+1}) - 2f(t_n) + f(t_{n-1})}{2h^2}$$

e la proprietà segue poichè:

risulta

$$p''(t) = 2a = \frac{f(t_{n+1}) - 2f(t_n) + f(t_{n-1})}{h^2}.$$

Poniamoci il problema di approssimare derivata prima e procediamo nello stesso modo cioè scrivendo le serie di Taylor per $f(t_{n+1})$ e $f(t_{n-1})$:

$$f(t_{n+1}) = f(t_n) + hf'(t_n) + \frac{h^2}{2}f''(t_n) + \frac{h^3}{6}f'''(\sigma_n), \ \sigma_n \in [t_n, t_{n+1}]$$

$$f(t_{n-1}) = f(t_n) - hf'(t_n) + \frac{h^2}{2}f''(t_n) - \frac{h^3}{6}f'''(\mu_n), \ \mu_n \in [t_{n-1}, t_n]$$

e questa volta sottraiamo la seconda dalla prima:

$$f(t_{n+1}) - f(t_{n-1}) = 2hf'(t_n) + \frac{h^3}{6} \left[f'''(\sigma_n) + f'''(\mu_n) \right]$$

ottenendo

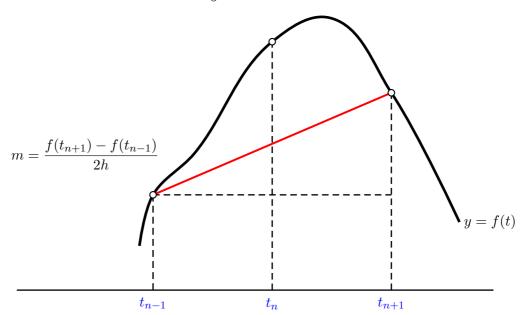
$$f'(t_n) = \frac{f(t_{n+1}) - f(t_{n-1})}{2h} - \frac{h^2}{12} \left[f'''(\sigma_n) + f'''(\mu_n) \right]$$

e, trascurando l'ultimo termine, l'approssimazione della derivata prima è:

$$f'(t_n) \simeq \frac{f(t_{n+1}) - f(t_{n-1})}{2h}$$
 (6.2)

mentre si può provare che l'errore vale:

$$E(f'(t_n)) = -\frac{h^2}{6}f'''(\delta), \qquad \delta \in [t_{n-1}, t_{n+1}].$$



La formula (6.2) prende il nome di formula alle differenze centrali. Osserviamo che sia per questa che per l'approssimazione numerica per la derivata

seconda l'errore dipende da h^2 , sono formule cioè del secondo ordine. Vediamo ora altre due approssimazioni per la derivata prima. Infatti possiamo anche scrivere:

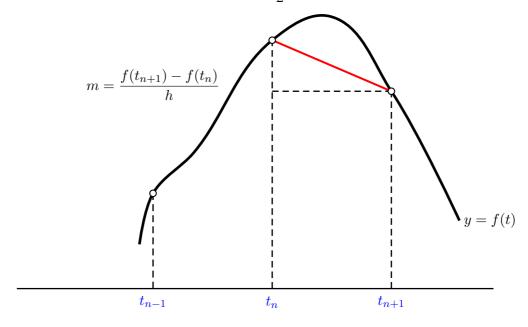
$$f(t_{n+1}) = f(t_n) + hf'(t_n) + \frac{h^2}{2}f''(\xi_n), \qquad \xi_n \in [t_n, t_{n+1}]$$

da cui si ricava immediatamente la formula alle differenze in avanti:

$$f'(t_n) \simeq \frac{f(t_{n+1}) - f(t_n)}{h} \tag{6.3}$$

con errore

$$E(f'(t_n)) = -\frac{h}{2}f''(\xi_n).$$



Analogamente si ricava

$$f(t_{n-1}) = f(t_n) - hf'(t_n) + \frac{h^2}{2}f''(\mu_n), \qquad \mu_n \in [t_{n-1}, t_n]$$

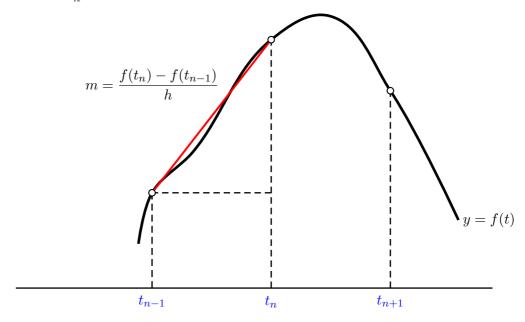
da cui si ricava immediatamente la formula alle differenze all'indietro:

$$f'(t_n) \simeq \frac{f(t_n) - f(t_{n-1})}{h}$$
 (6.4)

con errore

$$E(f'(t_n)) = -\frac{h}{2}f''(\mu_n).$$

Queste due formule hanno ordine 1, quindi sono meno precise rispetto alla formula alle differenze centrali, tuttavia hanno il pregio di poter essere applicate quando la funzione è discontinua (oppure non è definita) a destra o a sinistra di t_n .



6.2 Metodi numerici per equazioni differenziali ordinarie

Supponiamo che sia assegnato il seguente problema differenziale:

$$\begin{cases} y'(t) = f(t, y(t)) \\ y(t_0) = y_0 \end{cases}$$
 (6.5)

dove $f:[t_0,T]\times\mathbb{R}\to\mathbb{R}$ è una funzione continua rispetto a t e Lipschitziana rispetto a y, cioè esiste una costante positiva L tale che, per ogni $x,y\in\mathbb{R}$, risulta

$$|f(t,x) - f(t,y)| \le L|x-y|, \quad \forall t \in [t_0, T].$$

Il problema (6.5) prende il nome di problema di Cauchy del primo ordine ai valori iniziali. Risolvere (6.5) significa determinare una funzione y(t) di classe $C^1([t_0, T])$ la cui derivata prima soddisfi l'equazione assegnata e che passi per il punto (t_0, y_0) . In base alle ipotesi fatte sulla funzione f(t, y(t)) il teorema di Cauchy assicura l'esistenza e l'unicità di tale funzione.

Teorema 6.2.1 (di Cauchy) Sia $f(t,y) : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$, una funzione definita e continua per ogni (t,y) appartenente alla regione $[t_0,T] \times \mathbb{R}$, e sia inoltre Lipschitziana rispetto a y allora per ogni condizione iniziale esiste un'unica soluzione continua e differenziabile y(t) del problema (6.5).

L'equazione (6.5) dipende solo dalla derivata prima della soluzione, mentre si possono avere anche problemi di ordine superiore del tipo:

$$y^{(m)}(t) = f(t, y, y', y'', \dots, y^{(m-1)}(t)).$$

È tuttavia possibile ricondursi ad un sistema differenziale del primo ordine con alcuni cambi di variabile, infatti, posto

$$\begin{cases} y_1 &= y \\ y_2 &= y' \\ y_3 &= y'' \\ \vdots \\ y_m &= y^{(m-1)} \end{cases}$$

si ottiene il sistema differenziale equivalente:

$$\begin{cases} y'_1 &= y_2 \\ y'_2 &= y_3 \\ y'_3 &= y_4 \\ \vdots \\ y'_{m-1} &= y_m \\ y'_m &= f(t, y_1, y_2, \dots, y_m) \end{cases}$$

da cui, ponendo

$$A = \begin{bmatrix} 0 & 1 & & & & \\ 0 & 0 & 1 & & & \\ \vdots & \ddots & \ddots & \ddots & \\ \vdots & & 0 & 0 & 1 \\ 0 & \dots & \dots & 0 & 0 \end{bmatrix}, \quad \mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_{m-1} \\ y_m \end{bmatrix}, \quad \mathbf{f} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ f(t, \mathbf{y}) \end{bmatrix}$$

si ricava il sistema differenziale in forma compatta:

$$\mathbf{y}' = A\mathbf{y} + \mathbf{f}.$$

Descriveremo nel seguito alcune classi di metodi per equazioni differenziali del primo ordine, considerando sempre che tali metodi possono essere applicati anche a sistemi. Tali metodi ovviamente non forniscono in forma chiusa l'espressione della soluzione y(t) ma solo una sua approssimazione in un insieme discreto di punti. Se siamo interessati alla funzione y(t) nell'intervallo $[t_0, T]$ lo suddividiamo in N sottointervalli ciascuno di ampiezza $h = (T - t_0)/N$ e definiamo i punti

$$t_n = t_{n-1} + h = t_0 + nh, \qquad n = 0, \dots, N$$

dove la soluzione verrà approssimata.

Scriviamo l'equazione di Cauchy per $t=t_n$:

$$y'(t_n) = f(t_n, y(t_n))$$

e approssiamo la derivata prima con la formula alle differenze in avanti:

$$\frac{y(t_{n+1}) - y(t_n)}{h} \simeq f(t_n, y(t_n))$$

da cui, definendo le approssimazioni $y_n \simeq y(t_n)$ e $y_{n+1} \simeq y(t_{n+1})$ si ottiene la seguente uguaglianza tra quantità approssimate:

$$\frac{y_{n+1} - y_n}{h} = hf(t_n, y_n) \quad \Leftrightarrow \quad y_{n+1} = y_n + hf(t_n, y_n).$$

Tale metodo va sotto il nome di Metodo di Eulero Esplicito in quanto consente, noto y_n , di calcolare esplicitamente l'approssimazione nel punto successivo.

Scrivendo invece l'equazione di Cauchy per $t = t_{n+1}$:

$$y'(t_n) = f(t_{n+1}, y(t_{n+1}))$$

e approssimando la derivata prima con la formula alle differenze all'indietro:

$$\frac{y(t_{n+1}) - y(t_n)}{h} \simeq f(t_{n+1}, y(t_{n+1}))$$

si ottiene il cosiddetto Metodo di Eulero Implicito:

$$y_{n+1} = y_n + h f(t_{n+1}, y_{n+1}).$$

Esempio 6.2.1 Applicare il metodo di Eulero esplicito per approssimare la soluzione del problema di Cauchy:

$$y'(t) = e^{-y^2}, y(0) = 0$$

in t = 0.1.

Posto h = 0.1 si applica la formula con n = 0

$$y_1 = y_0 + h f(t_1, y_1), t_1 = t_0 + h = h$$

cosicchè risulti

$$y_1 \simeq y(0.1).$$

Sostituendo l'espressione della funzione l'approssimazione cercata è

$$y_1 = 0.1 e^{-y_1^2}$$
.

L'equazione, non lineare, può essere risolta solo utilizzando un metodo numerico, in quanto y_1 risulta essere lo zero della funzione

$$\varphi(x) = x - 0.1 \ e^{-x^2}.$$

Osservando, per esempio, che risulta $\varphi(0) < 0$ e $\varphi(1) > 0$ si potrebbe applicare il metodo delle bisezioni, oppure un metodo iterativo di punto fisso

$$x_{k+1} = 0.1 \ e^{-x_k^2}, \qquad x_0 = 0.$$

Un altro modo per derivare altri metodi numerici è quello di utilizzare le formule di quadratura descritte nel capitolo precedente. Infatti partendo dall'equazione differenziale

$$y'(t) = f(t, y(t)) \tag{6.6}$$

e supponendo di voler calcolare la funzione in t_{n+1} noto il suo valore in t_n , andiamo ad integrare membro a membro (6.6):

$$\int_{t_n}^{t_{n+1}} y'(t)dt = \int_{t_n}^{t_{n+1}} f(t, y(t))dt$$
 (6.7)

cioè

$$y(t_{n+1}) - y(t_n) = \int_{t_n}^{t_{n+1}} f(t, y(t)) dt$$
 (6.8)

quindi il problema equivale ad approssimare l'integrale a secondo membro. Un ulteriore formula per approssimare l'integrale in (6.7) è quello di usare l'area del trapezio avente come basi il valore della funzione f(t,y) calcolato negli estremi dell'intervallo e come altezza lo stesso intervallo:

$$y(t_{n+1}) - y(t_n) \simeq \frac{h}{2} \left[f(t_{n+1}, y(t_{n+1})) + f(t_n, y(t_n)) \right]$$

che dà luogo al cosiddetto Metodo dei Trapezi:

$$y_{n+1} = y_n + \frac{h}{2} [f(t_{n+1}, y_{n+1}) + f(t_n, y_n)].$$

I due metodi appena descritti sono di tipo implicito, cioè l'approssimazione y_{n+1} dipende dal valore assunto dalla funzione f(t, y) nell'incognita y_{n+1} . In questo caso è spesso necessario risolvere un'equazione non lineare (o un sistema di equazioni non lineari), che deve essere risolto numericamente.

I metodi descritti finora sono metodi ad un passo in quanto, per calcolare l'incognita y_{n+1} richiedono solo la conoscenza di y_n .

Un ulteriore metodo, applicabile all'intervallo $[t_n, t_{n+2}]$, consiste nell'approssimare l'integrale a secondo membro nell'equazione

$$y(t_{n+2}) - y(t_n) = \int_{t_n}^{t_{n+2}} f(t, y(t))dt$$
 (6.9)

con l'area del rettangolo avente come base l'intervallo $[t_n, t_{n+2}]$ e come altezza il valore assunto dalla funzione nel punto medio dello stesso intervallo:

$$y(t_{n+2}) - y(t_n) \simeq 2hf(t_{n+1}, y(t_{n+1}))$$

che fornisce il Metodo del Midpoint Esplicito:

$$y_{n+2} = y_n + 2h f(t_{n+1}, y_{n+1}).$$

Il metodo del midpoint esplicito è un metodo a due passi in quanto la soluzione nel punto t_{n+2} , che deve essere calcolata, dipende dalle approssimazioni in due punti precedenti, cioè y_n e y_{n+1} . È chiaro che in questo caso quando n=0 si ottiene lo schema numerico

$$y_2 = y_0 + 2hf(t_1, y_1)$$

in cui il valore y_0 è noto in quanto coincide con la condizione iniziale, mentre il valore y_1 vien calcolato applicando un metodo ad un passo (metodi di

Eulero e dei Trapezi).

Per approssimare l'integrale (6.9) si potrebbe applicare anche la formula di Simpson

$$y(t_{n+2}) - y(t_n) \simeq \frac{h}{3} \left[f(t_n, y(t_n)) + 4f(t_{n+1}, y(t_{n+1})) + f(t_{n+2}, y(t_{n+2})) \right]$$

ottendendo appunto il cosiddetto metodo di Simpson:

$$y_{n+2} = y_n + \frac{h}{3} \left[f(t_n, y(t_n)) + 4f(t_{n+1}, y(t_{n+1})) + f(t_{n+2}, y(t_{n+2})) \right].$$

Anche il metodo di Simpson, come quello del Midpoint esplicito, e un metodo a due passi in quanto, per il calcolo di y_{n+2} , richiede la conoscenza delle approssimazioni y_n e y_{n+1} .

6.2.1 Accuratezza dei metodi numerici

Quando il passo di integrazione h tende a zero l'insieme di punti discreti $\{t_n\}$ diventa l'intero intervallo $[t_0, T]$. Una proprietà ovvia da richiedere ad un qualsiasi metodo numerico è che, quando $h \to 0$ la soluzione numerica y_n diventa la soluzione teorica y(t), $t \in [t_0, T]$. Questa proprietà è detta Convergenza.

Definizione 6.2.1 Un metodo numerico si dice convergente se, per ogni problemi ai valori iniziali soddisfacente le ipotesi si ha:

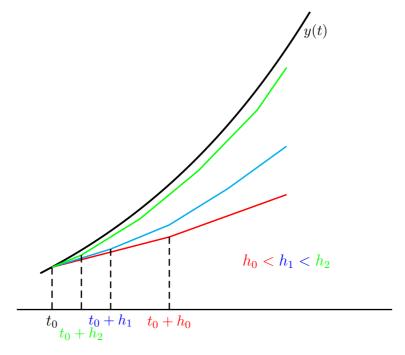
$$\lim_{\substack{h \to 0 \\ t = t_0 + nh}} y_n = y(t)$$

per ogni $t \in [t_0, T]$. Un metodo che non è convergente si dice divergente.

Tale definizione necessita di alcuni chiarimenti. Consideriamo infatti un punto t della discretizzazione (cioè tale che $t=t_n=t_0+nh$), un metodo convergente deve essere tale che la soluzione numerica y_n nel punto della discretizzazione $t=t_n$ tende a quella teorica y(t) quando $h\to 0$. La definizione puntualizza l'esigenza che, anche se h tende a zero (e quindi $n\to \infty$), la quantità nh si mantiene costante all'ampiezza dell'intervallo $[t_0,t]$. Una definizione alternativa di convergenza richiede che

$$\lim_{h \to 0} \max_{0 \le n \le N} |y(t_n) - y_n| = 0$$

quando il metodo numerico viene applicato ad un qualsiasi probema ai valori iniziali che soddisfa le ipotesi del Teorema 6.2.1. Nella seguente figura viene rappresentata tale proprietà.



Per i metodi che sono stati descritti nei paragrafi precedeti la convergenza è assicurata dal fatto che l'errore commesso nell'approssimazione (o della derivata prima della funzione o dell'integrale di f(t,y)) dipende da h (da potenze di h). Tuttavia la convergenza, da sola, non riesce a garantire, che, preso un valore del passo molto piccolo, la soluzione numerica sia molto vicina a quella teorica, a causa della presenza dei consuenti errori di rapprentazione dei dati e del condizionamento del problema differenziale.