Corso di Analisi Numerica

Corso di Laurea Magistrale in Ingegneria delle Telecomunicazioni
Anno Accademico 2010/2011

Ultimo Aggiornamento 20/06/2011


Avvisi

Prossimo appello:

13 Luglio 2011 Aula P ore 9.00.

Organizzazione del Corso

Il Corso di Analisi Numerica "vale" 3 crediti suddivisi secondo la seguente tipologia didattica:
3 crediti di lezioni teoriche (pari a 24 ore).

FinalitÓ del Corso

Obiettivo del corso Ŕ quello di fornire agli studenti gli strumenti per la risoluzione numerica di Equazioni alle Derivate Parziali.

Programma del Corso

Introduzione.

Equazioni alle derivate parziali. Ordine di un'equazione alle derivate parziali. Operatori differenziali: gradiente, divergenza, laplaciano e rotore. Esempi di equazioni alle derivate parziali. Classificazione delle equazioni alle derivate parziali. Equazioni ellittiche, paraboliche ed iperboliche. Classificazione alternativa: equazioni stazionarie e di evoluzione.

Derivazione numerica.

Approssimazione delle derivate prima e seconda tramite differenze finite. Approssimazione alle differenze centrali, in avanti e all'indietro. Definizione di ordine di un'approssimazione.

Equazioni Ellittiche.

L'equazione di Laplace. Funzioni armoniche e principio del massimo. Approssimazioni di ordine superiore. Metodo a 5 punti per l'equazione di Laplace. Ordinamento delle incognite. Ordinamento Lessicografico, di Cuthill-McKee, Red-Black, Multicolore. Stuttura della matrice dei coefficienti. Convergenza del metodo a 5 punti. Metodi di ordine superiore per l'equazione di Laplace. Il Metodo a 9 punti per l'equazione di Poisson. Equazione di Laplace su domini irregolari. Il caso del dominio circolare. L'equazione di Laplace in coordinate polari. Approssimazione della derivata seconda su griglie non equidistanti.

Equazioni Paraboliche.

Equazioni di evoluzione. Esempi: l'equazione di Schr÷edinger. L'equazione del calore in una dimensione. Il problema ai valori iniziali. Il problema ai valori al contorno. Il metodo di Eulero Esplicito per l'equazione del calore. La costante di Courant. Analisi di stabilitÓ di von Neumann. Il Metodo alle Differenze Centrali Implicito. Il metodo di Crank-Nicolson. I Theta-metodi. Analisi di StabilitÓ per i Theta-metodi (Enunciato). Metodi numerici per l'equazione del calore in due dimensioni. Theta-metodi per problemi lineari in due dimensioni. Il metodo delle direzioni alternate.

Equazioni Iperboliche.

L'equazione d'onda. Il problema di Cauchy. Il problema ai valori iniziali e al contorno. La formula di D'Alembert. Intervallo e dominio di dipendenza. Il metodo delle caratteristiche. Condizione di Courant, Friedrichs e Lewy (CFL). L'equazione d'onda del primo ordine. Il metodo di Lax-Friedrichs. Il metodo di Lax-Wendroff. L'equazione d'onda del secondo ordine. Un metodo implicito ed uno esplicito per l'equazione d'onda del secondo ordine.

Equazioni iperboliche non lineari.

Equazioni in forma conservativa e non conservativa. L'equazione di Burgers. Curve caratteristiche per l'equazione di Burgers. Soluzioni discontinue: shock e rarefazione. La condizione di Courant, Friedrichs e Lewy per equazioni di flusso.

Appedince A: Metodi iterativi per sistemi sparsi e di grandi dimensioni.

Il metodo di Jacobi. Il metodo di Gauss-Seidel. Il metodo del Rilassamento. Convergenza dei metodi iterativi.

Appedince B: Metodi agli Elementi Finiti per Equazioni alle Derivate Parziali.

Problemi variazionali. Formulazione forte e formulazione debole dell'equazione di Poisson. Formula di Green. Metodo di Galerkin. Triangolazione dei domini. Funzioni base. Matrice di stiffness. Un esempio di assemblaggio della matrice di stiffness. Raffinamento delle triangolazioni.

Gli argomenti delle due appendici sono facoltativi, ovvero non saranno oggetto di domande d'esame.
Libro di testo:
D. Greenspan, V. Casulli, Numerical Analysis for Applied Mathematcs, Science, and Engineering, Addison-Wesley.

Materiale didattico

Dispense del corso:

Dispense del Corso

Lucidi degli argomenti del corso:

Introduzione
Derivazione Numerica
Equazioni Ellittiche
Equazioni Paraboliche
Equazioni Iperboliche
Metodi iterativi per Sistemi Lineari
Metodi agli Elementi Finiti

Sia le dispense che i lucidi del corso necessitano di una stampante a colori.

ModalitÓ dell'esame

L'esame consiste in una prova scritta eventualmente integrata da un esame orale.

Tracce di esame

File PDF delle tracce

Date degli appelli

Prossimo appello:

13 Luglio 2011 Aula P ore 9.00.